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1 Introduction

In this chapter we give an introduction and review of randomized experiments. More details and expo-
sition can be found in Hernán and Robins [2010], Imbens and Rubin [2015], Rosenbaum [2002], Tsiatis
[2006], van der Laan and Robins [2003], for example, among many others. Notation will be defined as
it is introduced, but we give a reference table in the Appendix.

1.1 Why Do We Need Randomization?

Suppose we observe outcomes (Y1, ..., Yn) for n subjects, each of whom are either treated (A = 1) or
not (A = 0), and we want to learn the causal effect of the treatment A on the outcome Y , say on
average. An initial idea might be to compare the average outcome for those n1 who receive treatment
versus that of the n0 who receive control:

1

n1

∑
i:Ai=1

Yi versus
1

n0

∑
i:Ai=0

Yi.

However, any differences we see could be spurious, i.e., explained by something else.

Example 1. As an example from criminal justice, consider the pre-trial release setting where a judge
has to determine whether to release a defendant pre-trial. This decision might be based on their rea-
soning of how likely the defendant is to fail to appear for trial, and how likely the defendant is to
be arrested for a new crime before the trial. Jurisdictions across the country are increasingly using
data-driven prediction instruments, such as the Public Safety Assessment (PSA), to help judges make
these decisions. While these risk assessments often contain separate predictions for failure to appear
and new arrests, for simplicity consider the prediction of new arrest. Suppose we are interested in eval-
uating an algorithmic risk assessment instrument that predicts the likelihood of re-arrest based on the
defendant’s prior criminal record, current charges, and age [Imai et al., 2020]. We would then like to
investigate questions such as: Do judges make better decisions when they have access to these risk as-
sessment scores? Are observed re-arrests rates lower for decisions made based on the risk assessments?

In the above example, if judges could decide when to see the re-arrest risk assessment instrument,
we may expect judges to be more likely to do so for difficult cases where they are uncertain, compared
to cases where it is clear that the defendant should be released. In such a setting, because the control
cases are less risky than the treated cases, we cannot attribute differences in outcomes to the risk as-
sessment. More generally, differences in outcomes might be due to the units receiving treatment being
inherently different from those receiving control. This is popularly recognized as “correlation does not
imply causation”.



What if we think we can identify cases that are similarly difficult (or easy) and would like to
compare outcomes under treatment against outcomes under control for cases that are similar in level
of difficulty? This would require us to measure any and all variables X that might explain differences in
outcomes between treated and control units. In the pre-trial release decision setting, one might try to
measure every possible criminal risk factor, such as economic opportunity, behavioral characteristics,
mental health, community support, social ties, and so on. There are at least three difficulties with this
approach:

1. We often simply do not know every single X = (X1, X2, ..., X1000, ...) that could explain any
differences in outcomes between subjects with different treatment levels.

2. Even if we did know every single possible X with certainty, it might be impossible or too expensive
to measure every single one of them.

3. And even if we could measure every single X, there may be so many that few if any subjects would
have the same or similar X’s in every dimension, meaning it is impossible to find any untreated
units with the same X values as a treated unit. This so-called “curse of dimensionality" would
make estimation impossibly difficult.

We can avoid these difficulties when we can control who gets treatment. A simple yet beautiful
solution is to assign treatment randomly. For example, if one could flip a coin to decide whether each
subject gets treatment versus control (e.g., in our example, flip a coin to decide in which cases the
judge is presented with the AI risk score), then we could properly study the causal effect of treatment
A on outcome Y . Surprisingly, the benefits of randomization were largely unknown until relatively
recently in the long history of science: according to the Oxford English Dictionary, its first recorded
use was due to R.A. Fisher in 1926.

1.2 Why Does Randomization Work?

Why does assigning treatments at random allow for valid estimation of causal effects? Randomization
ensures that treatment is completely independent of all subject characteristics, whether measured or
not. In other words, the treated look exactly the same as the untreated, in expectation, and not only for
all measured variables X but also for any unmeasured variables U (we will see later that finite-sample
differences are handled with appropriate variance estimators). Thus any observed differences in the
outcomes for the treated versus untreated must be due to the treatment: it is the only systematic way
in which the groups differ.

We can formalize this argument using the potential or counterfactual outcomes Y a
i , i.e., the hypo-

thetical outcome we would have observed if subject i had received treatment Ai = a. We briefly discuss
the concept and notation of potential outcomes, and then we revisit the question of why randomization
works. Note that Yi represents what was actually observed, whereas Y a

i represents what would have
been observed under a treatment that might not have been received in the real world. This is a very
important distinction. One can imagine Y a

i for different values of a representing different outcomes
that would have existed in parallel universes where everything else is the same except for the treatment
assignment being Ai = a.

For instance, under a binary treatment each subject has two potential outcomes: Y 1
i if treated

(Ai = 1) and Y 0
i if not (Ai = 0). The former is observed only for the units under treatment

and the latter only for the control (untreated) units, so that the observed Yi can be written as
Yi = AiY

1
i + (1 − Ai)Y

0
i . In our criminal justice example, Y 1

i could be whether defendant i is re-
arrested had the judge used the AI risk score to make her pre-trial decision, and Y 0

i could be whether
re-arrest occurred had the risk score not been used.

Remark 1. Often we will drop the i subscript, and if it is clear what is being intervened upon we will
just write Y 1 or Y 0. We use superscripts as in Y a to denote potential outcomes, but other references
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may use subscripts Ya or parentheses Y (a).

Now let’s consider why randomization works in terms of the potential outcomes. Specifically, by
randomly assigning treatment A, we are taking two random samples: one of the Y 1 values and another
of the Y 0 values. Since random samples yield unbiased estimators of population means, the average
observed outcomes in the two groups will be unbiased estimates of the corresponding average potential
outcomes.

We can prove randomization works mathematically, as illustrated in the following result. In addi-
tion to randomization, this proposition makes the assumption that an unit’s observed outcome depends
only on its own treatment assignment (the assumption of consistency). This assumption is violated for
instance when there is interference between units, an issue we revisit in the advanced topics at the end
of the chapter.

Proposition 1. Let (A, Y ) ∼ P and assume:

1. Consistency: Y = Y a whenever A = a.
2. Randomization: A ⊥⊥ Y a for each a.

Then
E(Y | A = a) = E(Y a).

Proof. We have
E(Y | A = a) = E(Y a | A = a) = E(Y a),

using consistency in the first equality and randomization in the second.

Proposition 1 shows that we can identify the expected value of the potential outcome Y a as the
expected value of the observed outcome Y for those under treatment level A = a. Identification refers
to the process of expressing causal parameters (e.g., E(Y a)) in terms of the distribution we actually
sample from (e.g., (Y,A)).

For example, suppose we are interested in comparing the re-arrest rate if a risk assessment instru-
ment is always used E(Y 1) versus the re-arrest rate if it is never used E(Y 0). If we can randomly assign
when the risk assessment scores are presented to the judges, then Proposition 1 guarantees that we
would be able to properly estimate E(Y 0) and E(Y 1) using the observed outcomes Y , and therefore
we can estimate the causal effect of the AI system on the re-arrest rates.

Remark 2. It is important not to confuse A ⊥⊥ Y a with A ⊥⊥ Y : these are very different. A ⊥⊥ Y a means
treatment is independent of potential outcomes (which can be viewed as “pre-treatment” variables that
exist just prior to the treatment assignment), and reflects that treatment is not confounded. A ⊥⊥ Y
means treatment is independent of the observed outcome, and would for example be a consequence
of treatment not only being unconfounded but also ineffective (e.g., Y 1 = Y 0). Always remember to
distinguish potential from observed outcomes.

Remark 3. Although Proposition 1 gives an identification result for the mean potential outcome, its
assumptions are sufficient for identifying the entire distribution of potential outcomes as P(Y a ≤ t) =
P(Y ≤ t | A = a).

Proposition 1 also shows that treatment assignment need not necessarily be a subject-specific coin
flip – for the purposes of achieving identification of the potential outcome distribution, treatment just
needs to be independent of potential outcomes. This leads to the following definition of a randomized
experiment:
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Definition 1 (Randomized experiment). A study is a randomized experiment if the treatment as-
signment is both probabilistic and known.

There are many types of experimental designs. Letting An = (A1, ..., An) denote the vector of
treatment assignments for the n study subjects, we have the following designs:

– Completely randomized: n1 of n subjects are randomly assigned to treatment, i.e., P(An = an) =
1/
(
n
n1

)
for
∑

i ai = n1.
– Bernoulli: Treatments are assigned via independent coin flips, i.e., P(An = an) = (1/2)n for every
an = (a1, ..., an) ∈ {0, 1}n.

– Stratified Bernoulli: Treatments are assigned via independent biased coin flips depending on co-
variates, i.e., P(An = an | Xn) =

∏
i P(Ai = ai | Xi).

– Matched pairs: Matched pairs are constructed with exacty one treated in each pair, i.e., P(An =
an | Xn) = 1/2n/2.

Depending on the particulars of the experimental setting, one design may be favored over another for
reasons such as efficiency or feasibility.

1.3 Connections to AI for Social Impact

Once deployed in the real world, even the most carefully designed artificial intelligence (AI) systems
may fail to achieve their intended goals or may have adverse unintended consequences. How should
researchers assess whether the AI actually improved outcomes? Randomized experiments are the gold
standard for evaluation. They enable one to isolate the effect of the AI from other potentially con-
founding factors. Examples of AI systems for social impact that have been deployed and evaluated in
the real world abound: Wang et al. [2019] studies the effect on the adenoma detection rate of using
real-time AI-assisted colonoscopies, Mohler et al. [2015] evaluates the effect of using a predictive polic-
ing model on crime rates in Los Angeles, Mate et al. [2021] assesses the effect on dropout of using
a model to prioritize the follow-up of participants in a maternal and child care information program, etc.

2 Simple Randomized Experiments

2.1 Testing: Fisher’s Sharp Null

Jerzy Neyman seems to have been the first to introduce potential outcomes [Neyman, 1990], but R.A.
Fisher was perhaps the first to really advocate for randomization [Fisher, 1925].

Fisher was interested in testing the sharp null hypothesis

H0 : Y 1
i = Y 0

i for all i,

which says that treatment has no effect whatsoever – not only is the mean of Y 1 exactly equal to that
of Y 0, but the entire distributions are equal, and further each individual potential outcome is exactly
the same under both treatment and control. This is a strong null with lots of structure, in line with
Fisher’s perspective that one should “make your theories elaborate” [Rosenbaum, 2002].

To test a generic null hypothesis H0 we need (1) a statistic T , and (2) its distribution under the
null. Then one can obtain a a p-value, i.e., PH0

(T ≥ tobs), the chance under the null of seeing data as
extreme as that which was actually observed.
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To test Fisher’s sharp null, we can use as a statistic any summary measure of how treatment changes
outcomes; for example, a simple yet common choice is the absolute difference-in-means

T (An, Y n) =

∣∣∣∣∣ 1n1 ∑
i:Ai=1

Yi −
1

n0

∑
i:Ai=0

Yi

∣∣∣∣∣ =
∣∣∣∣Pn(AY )

Pn(A)
− Pn{(1−A)Y }

Pn(1−A)

∣∣∣∣ ,
where Pn(Z) denotes the empirical mean of Z, 1

n

∑n
i=1 Zi. Note this test statistic will be large if the

treated versus untreated means differ, but not if the treatment only changes non-central aspects of the
distribution, e.g., the variance.

Armed with a test statistic, we now need to know its distribution under the null. This is actually
easy, and typically part of the motivation for using the sharp null: it yields tractable null distributions,
which can be computed in a non-asymptotic and distribution-free manner. To illustrate, consider a
completely randomized experiment where the observed value of the difference-in-means test statistic
for the observed data (An = (A1, . . . , An), Y

n = (Y1, . . . , Yn)) is T (An, Y n) ≈ 0.9. We can also com-
pute the value of this statistic under the null, for any randomization, since under the null the potential
outcomes are exactly the same, i.e., Y 0 = Y 1 = Y . Therefore we can obtain the null distribution
of T by permuting the An vector (according to the known treatment assignment mechanism), while
keeping the Y n vector fixed, computing the corresponding value of the test statistic T , which yields
the corresponding null distribution PH0

(T ≤ t). A p-value can be computed by simply counting the
proportion of permutations with test statistics larger than that which was observed.

Example R code to test Fisher’s sharp null can be found in the Appendix. The data and results are
shown in Figure 1. In this simulation, the p-value is 0.084 and so there is sufficient evidence to reject
the sharp null hypothesis of no individual treatment effect at level α = 0.10.
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Fig. 1: Boxplot of simulated outcomes under control 0 and treatment 1 (left), and histogram of
permutation-based null distribution with the red vertical line denoting the observed test statistic
value (right).
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Mathematically, for a completely randomized experiment where a fixed number n1 are treated, the
null distribution can be written as

PH0(T ≥ t) = PH0{T (An, yn) ≥ t} =
∑
an∈A

1{T (an, yn) ≥ t}P(An = an)

=
∑

an:
∑

i ai=n1

1{T (an, yn) ≥ t}(
n
n1

) .

In theory we can compute this distribution exactly; in practice if n is large we may need to resort
to simulation (e.g., sample K of the

(
n
n1

)
randomizations). However the distribution can be simulated

with arbitrarily high accuracy by taking K large enough.

Remark 4. The null distribution calculation above treats the (potential) outcomes yn as fixed; this can
be viewed as an assumption that Y a is not a random variable, or the probability can just be defined
conditionally, given the random potential outcomes.

Fisher’s permutation-style test is simple but impressive: it gives an exact distribution-free p-value
for testing H0, which is valid for any n. Nonetheless here are some caveats:

– The power of the test depends heavily on the choice of statistic, e.g., the difference-in-means test
statistic will have no power against a treatment that makes outcomes bimodal or otherwise more
variable.

– Fisher’s test is of the sharp null of no individual effect, not of no average effect – in fact rejecting
Fisher’s null could still mean there is no effect on average.

2.2 Estimation: Sample Average Effects

In the 1920s and 1930s, Fisher and Neyman had some heated debates about whether testing Fisher’s
sharp null should be the primary goal or not [Lehmann, 2011]; in contrast to Fisher, Neyman advo-
cated more for estimation rather than testing, and focused on average effects. Average effects might
be considered more relevant for policy decisions, since they indicate how a population would fare on
average if all versus none were treated, e.g., how would public safety change if all vs. none of the judges
use an AI risk score in their pre-trial decisions? In contrast, rejecting the sharp null only indicates that
treatment has some effect, without saying much about what kind.

The sample average treatment effect is given by

ψn =
1

n

n∑
i=1

(y1i − y0i ).

This parameter is different from those we will study later in that it is a functional of the particular
sample, rather than of a population distribution (i.e., strictly speaking it is a data-dependent param-
eter, which is why we index it with n).

Remark 5. In this section we again treat potential outcomes as fixed, not random; or equivalently we
treat probability statements as conditional on the potential outcomes. Note however that even if the
potential outcomes are fixed, the observed outcome is random since it is a function of the random
treatment: Y = Ay1 + (1−A)y0.
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A natural estimator for ψn in completely randomized experiments is the difference-in-means

ψ̂ =
1

n1

∑
i:Ai=1

Yi −
1

n0

∑
i:Ai=0

Yi =
Pn(AY )

Pn(A)
− Pn{(1−A)Y }

Pn(1−A)
. (1)

We will now characterize the bias and variance of this estimator and discuss inference.

Proposition 2. The difference-in-means estimator (1) is unbiased for ψn in a completely randomized
experiment, assuming only consistency (i.e., Y = Ay1 + (1−A)y0).

Proof. By definition, in a completely randomized experiment, we have

P(A1 = 1) =
∑

∑
i>1 ai=n1−1

P(A1 = 1, A2 = a2, ..., An = an)

=
∑

∑
i>1 ai=n1−1

(
n

n1

)−1

=

(
n−1
n1−1

)(
n
n1

) =
n1
n
,

and similarly for all other i > 1. Therefore

E(ψ̂) =
1

n1

n∑
i=1

E(Ai)y
1
i −

1

n0

n∑
i=1

{1− E(Ai)}y0i =
1

n

n∑
i=1

(y1i − y0i ),

where the first equality follows by consistency, and the second since E(Ai) = P(Ai = 1) = n1/n.

As mentioned previously, the intuition behind unbiasedness in this setup is that the treatments
pick out random samples of Y 1 and Y 0 potential outcomes, and random sampling allows for unbiased
estimation of means.

Now we will explore the variance of ψ̂, which is critical for constructing confidence intervals and
hypothesis tests; its calculation requires some care since the Ai’s are not independent (e.g., in the
n = 2 case, if A1 = 1 then it must be the case that A2 = 0).

Proposition 3. For a completely randomized experiment, and assuming consistency, the variance of
the difference-in-means estimator is given by

var(ψ̂) =
σ2
n(y

1)

n1
+
σ2
n(y

0)

n0
− σ2

n(y
1 − y0)

n
, (2)

where

σ2
n(v) =

1

n− 1

n∑
i=1

vi − 1

n

n∑
j=1

vj

2

denotes the finite sample variance of (v1, ..., vn).

Proof. See the appendix of Chapter 6 in Imbens and Rubin [2015].

Regarding inference, a finite-sample central limit theorem implies under some regularity conditions
that

ψ̂ − ψn√
var(ψ̂)

⇝ N(0, 1).
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Therefore to construct large-sample confidence intervals, one needs to estimate the variance var(ψ̂) in
(2). The first two terms in this variance can be estimated with

σ̂2
n(y

a) =
1

na − 1

∑
i:Ai=a

Yi − 1

na

∑
j:Aj=a

Yi

2

,

but the third term is the finite-sample variance of the individual treatment effects (y1i − y0i ), and
involves product terms like y1i y0i which can never be observed together. Thus the third term cannot be
consistently estimated. However we can upper bound the variance as, for example

var(ψ̂) ≤ σ2
n(y

1)

n1
+
σ2
n(y

0)

n0
, (3)

which will yield conservative inference (at worst), when used to construct confidence intervals. Tighter
bounds can be achieved with the Cauchy-Schwarz inequality or Frechet-Hoeffding bounds [Aronow
et al., 2014].

2.3 Population Average Effects

In this section we move to population rather than finite-sample effects. These effects can be useful for
at least three reasons:

1. Population effects are often of particular substantive interest: typically we might view our sample
as haphazard and not particularly special, except insofar as they tell us something about some
larger population from which they were drawn.

2. Often population effect estimators can also be used for estimating sample effects, without modifi-
cation, while the converse is not necessarily true; thus by studying population effects we can kill
two birds with one stone. This is discussed in more detail shortly.

3. Population effects can be simpler to study, easing theoretical analyses without losing much in terms
of main ideas.

Therefore here we suppose we observe an iid sample (Z1, ..., Zn) from population distribution P
with Z = (A, Y ). Our goal is to estimate the population average effect

ψ = E(Y 1 − Y 0),

rather than the sample average effect ψn from before. Recall that average effects ask how a population
outcome would change on expectation if all versus none were treated.

Now we will study three basic properties of the difference-in-means estimator ψ̂ given in (1): its
bias, variance, and limiting distribution. We will see that, using this estimator, precise estimation and
inference are possible for the causal effect ψ in Bernoulli trials, under the following three (quite weak)
assumptions:

1. Consistency: Y = Y a if A = a.
2. Bernoulli randomization: A ⊥⊥ Y a with P(A = 1) = π.
3. Finite variance: Y has finite conditional variance given A = a.

Remark 6. Note that, in the above Bernoulli trial where each Ai is assigned via an independent coin
flip, the observed number of treated subjects N1 =

∑
iAi ∼ Bin(n, π) is random, not fixed. In this

section we also view the potential outcomes as random variables, and not fixed.
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Properties of the Difference-in-Means Estimator

Theorem 1. Assume consistency. In a Bernoulli trial, the difference-in-means estimator (1) is unbi-
ased for ψ and has variance no greater than

2

(n+ 1)

(
σ2
1

π
+

σ2
0

1− π

)
,

where σ2
a = var(Y | A = a).

Proof. Since the assumptions from Proposition 1 hold we have

ψ = E(Y 1 − Y 0) = E(Y | A = 1)− E(Y | A = 0).

Let π̂ = Pn(A) and just consider the first term µ̂1 = Pn(AY )/π̂ as an estimator of µ1 = E(Y | A = 1).
We have

E(µ̂1 | An) =
1

π̂
E
{
Pn(AY ) | An

}
=

1

π̂
Pn

{
AE(Y | An)

}
=

1

π̂
Pn

{
AE(Y | A = 1)

}
= (π̂µ1)/π̂ = µ1,

by iterated expectation and the iid assumption. Unbiasedness now follows by iterated expectation, and
consistency follows from the weak law of large numbers and continuous mapping theorem. The logic
is the same for µ̂0 = Pn{(1−A)Y }/(1− π̂). By the law of total variance we have

var(µ̂1) = var
{
E(µ̂1 | An)

}
+ E

{
var(µ̂1 | An)

}
.

Note var{E(µ̂1 | An)} = var(µ1) = 0 from above, and

var(µ̂1 | An) =

(
1

nπ̂

)2 n∑
i=1

Aivar (Yi | An)

=

(
1

nπ̂

)2 n∑
i=1

Aiσ
2
1 =

σ2
1

N1
1(N1 > 0),

where we used independence and defined σ2
1 = var(Y | A = 1) and N1 = nπ̂ ∼ Bin(n, π). Now

var(µ̂1) = E
{

var(µ̂1 | An)
}
≤ 2σ2

1

(n+ 1)π

by the expected binomial reciprocal result (Lemma A.2) of Devroye et al. [1996]. The same logic applies
to µ̂0, and iterated expectation shows that the covariance term cov(µ̂1, µ̂0) is exactly zero, which gives
the result.

Theorem 2. Assume consistency. For a Bernoulli trial, the difference-in-means estimator is root-n
consistent and asymptotically normal with

√
n(ψ̂ − ψ)⇝ N

(
0,

σ2
1

π
+

σ2
0

1− π

)
,

where σ2
a = var(Y | A = a).
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Proof. We again focus on µ1 and its estimator. Note we have

µ̂1 − µ1 =
Pn(AY )

π̂
− µ1 = Pn

{
A

π̂
(Y − µ1)

}
= Pn

{
A

π
(Y − µ1)

}
+

(
1

π̂
− 1

π

)
Pn {A(Y − µ1)}

= Pn

{
A

π
(Y − µ1)

}
+OP(1/

√
n)OP(1/

√
n),

where the last equality follows by the central limit theorem, which implies
√
n{Pn(V )−E(V )} = OP(1)

for any iid V with finite mean and variance, together with the fact that (π̂, π) are bounded away from
zero. Therefore

µ̂1 − µ1 = Pn

{
A

π
(Y − µ1)

}
+ oP(1/

√
n),

since OP(1/
√
n)OP(1/

√
n) = OP(1/n) = oP(1/

√
n). Therefore by the central limit theorem (together

with Slutsky’s theorem) we have

√
n
(
µ̂1 − µ1

)
⇝ N

(
0, var

{
A

π
(Y − µ1)

})
.

The logic for the µ̂0 part is analogous.

Theorem 1 is quite powerful in showing that, in Bernoulli trials, mean counterfactuals can be esti-
mated very precisely (i.e., with zero bias and variance that scales like 1/n) using no assumptions other
than consistency and finite variance. In other words: randomization allows accurate and essentially
assumption-free causal inference.

Similarly, Theorems 1 and 2 also pave the way for inference, in the form of confidence intervals and
hypothesis tests. Namely, finite sample confidence intervals could be constructed based on Theorem 1
using bounds on the conditional variances σ2

a, and Theorem 2 implies for example that an asymptotic
95% CI is given by

ψ̂ ±
(
1.96√
n

)
ŝd
{
A(Y − µ̂1)

π
− (1−A)(Y − µ̂1)

1− π

}
.

Remark 7. We saw above that the asymptotic variance of the difference-in-means estimator in a
Bernoulli experiment is given by

σ2
1

π
+

σ2
0

1− π
.

One interesting thing to note about this variance comes from the perspective of experimental design:
what is the best choice of π for optimizing efficiency? In fact, it is straightforward to show that

argmin
π

(
σ2
1

π
+

σ2
0

1− π

)
=

σ1
σ0 + σ1

,

therefore for optimal efficiency the proportion treated should match the standard deviation of treated
outcomes, as a fraction of the total standard deviation for treated and untreated outcomes. This
matches intuition: if outcomes are more variable among treated patients than among those receiving
control (i.e., if σ1 > σ0) then more patients should be assigned to treatment, in order to counterbalance
this extra noise among the treated.
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Sample versus Population Effects Here we point out an interesting connection between sample
effect estimation in completely randomized experiments and population effect estimation in Bernoulli
experiments.

Based on Theorem 2, an asymptotic 95% CI for ψ in a Bernoulli experiment is given by

ψ̂ ± 1.96

√
σ̂2
1

nπ̂
+

σ̂2
0

n(1− π̂)
,

where σ̂2
a ≡ σ2

n(y
a) is the usual sample variance among the treated (a = 1) and controls (a = 0),

which we used in our analysis of the difference-in-means as an estimator of the sample average effect
in completely randomized experiments (e.g., Proposition 3).

In fact, ψ̂ is the exact same point estimate of the sample effect that we analyzed in completely
randomized experiments, and similarly the exact same confidence interval

ψ̂ ± 1.96

√
σ̂2
1

nπ̂
+

σ̂2
0

n(1− π̂)

is also valid (possibly conservative) in completely randomized experiments, guaranteeing at least 95%
coverage of the sample effect. (This results from using the naive bound of σ2

n(y
1 − y0) ≥ 0 as in (3)).

Thus, not only is the estimator for the population effect exactly the same as that for the sample effect,
but confidence intervals for the population effect are also valid for the sample effect, being at worst
conservative. This is an archetypal example of how finite-sample and population-based frameworks can
coincide.

Note that, although population-based confidence intervals are valid for sample effects, the converse
is not necessarily true: it is easier to estimate sample effects, in the sense that the same estimators
have smaller variances relative to sample versus population effects. Thus a confidence interval for a
sample effect may not be valid for a population effect. For example, Imbens [2004] shows that

E{(ψ̂ − ψn)
2} = E{(ψ̂ − ψ)2} − var(Y 1 − Y 0)

n
+ o(1/n),

so that the difference-in-means has smaller variance when estimating the sample effect ψn. For some
intuition, imagine both potential outcomes were observed for each subject: then the sample effect would
be estimated without error, but not the population effect.

Difference-in-Means versus Horvitz-Thompson Estimators Note that the difference-in-means
estimator is given by

ψ̂ =
Pn(AY )

Pn(A)
− Pn{(1−A)Y }

Pn(1−A)
= Pn

{(
A

π̂

)
Y −

(
1−A

1− π̂

)
Y

}
,

which suggests a different estimator, where we replace the estimated proportion treated π̂ with its
known population value π:

ψ̂ht = Pn

{(
A

π

)
Y −

(
1−A

1− π

)
Y

}
.

This estimator is known as the Horvitz-Thompson estimator, hence the ht subscript.

Since we are replacing an estimated quantity π̂ with its known value π, it may appear as if we
should gain efficiency. Here we study whether this is actually the case. It is straightforward to check
that the Horvitz-Thompson estimator is unbiased and consistent, like the difference-in-means; and
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since it is exactly equal to a sample average, we can apply the central limit theorem to immediately
obtain

√
n(ψ̂ht − ψ)⇝ N

(
0, var

{(
A

π
− 1−A

1− π

)
Y

})
.

Thus both the difference-in-means and Horvitz-Thompson estimators are unbiased, root-n consistent,
and asymptotically normal. To determine whether it is beneficial or not to replace the estimate π̂ with
its known value π, we will compare asymptotic variances.

Let ϕ = A
π (Y − µ1)− 1−A

1−π (Y − µ0) and ϕht =
(

A
π − 1−A

1−π

)
Y denote the functions whose variances

correspond to the asymptotic variances of ψ̂ and ψ̂ht, respectively. Then we have

var(ϕht) = var
(
ϕ+

A

π
µ1 −

1−A

1− π
µ0

)
= var(ϕ) + var

(
A

π
µ1 −

1−A

1− π
µ0

)
,

where the last line follows since E(ϕ | A) = 0 implies that

cov
(
ϕ,
A

π
µ1 −

1−A

1− π
µ0

)
= 0

by iterated expectation.

Therefore
var(ϕht) ≥ var(ϕ),

and thus the Horvitz-Thompson estimator is actually less efficient than the difference-in-means. This
is somewhat counterintuitive: replacing an estimated quantity with its known population counterpart
actually reduces efficiency! Often when we estimate things we get something less precise than if we
just used the true quantity.

One way to think about this paradox is as follows. Rather than viewing ψ̂ht as replacing an estimated
quantity with a known quantity, one can instead view it as moving away from the sample average
ψ̂ = µ̂1 − µ̂0 with a noisier version

ψ̂ht =

(
π̂

π

)
µ̂1 −

(
1− π̂

1− π

)
µ̂0,

which should degrade performance, merely since sample averages are efficient estimators of means. In
other words, the Horvitz-Thompson estimator is using the expected number of treated nπ rather than
the actual number nπ̂, so that when the actual number differs from its expectation, the averages are
not correctly weighted.

3 Randomized Experiments with Covariates

3.1 Identification with Covariates

So far we have considered settings where we have access to an iid sample

(A1, Y1), ..., (An, Yn) ∼ P,

but it is very common to also observe auxiliary covariate information (e.g., demographics like age
or gender, socio-economic status, prior criminal records or baseline outcome measures, etc.). Thus in
practice we often have an iid sample

(X1, A1, Y1), ..., (Xn, An, Yn) ∼ P
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for covariates or features X ∈ Rd. If we believe these covariates might be useful in predicting our
outcome of interest (e.g., re-arrest), we might wonder whether incorporating knowledge of these co-
variates could improve our estimates of the causal effect ψ = E(Y 1 − Y 0), i.e., the mean outcome in
the population if all versus none were treated.

In detail, the questions we consider here are: Does our previous identification result ψ = E(Y | A =
1)−E(Y | A = 0) in the setting without covariates still hold? Are there any new identification results
that the covariates buy us? We will see that the answer to both questions is yes for the experimental
setting, in which we can assume

1. Consistency: Y = AY 1 + (1−A)Y 0.
2. Randomization: A ⊥⊥ (X,Y a) for a ∈ {0, 1} with P(A = 1 | X) = π.

Proposition 4. Assume consistency and randomization as given above. Then

E(Y 1 − Y 0) = E(Y | A = 1)− E(Y | A = 0)

= E
{
E(Y | X,A = 1)− E(Y | X,A = 0)

}
≡
∫ {

E(Y | X = x,A = 1)− E(Y | X = x,A = 0)
}
dP(x).

Proof. Since A ⊥⊥ (X,Y a), standard independence calculations show that this implies A ⊥⊥ Y a and
A ⊥⊥ Y a | X. We know from the previous section that A ⊥⊥ Y a implies

E(Y a) = E(Y a | A = a) = E(Y | A = a)

by randomization and consistency. For the second identification result note that

E(Y a) = E{E(Y a | X)} = E{E(Y a | X,A = a)} = E{E(Y | X,A = a)},

where the first equality follows by iterated expectation, the second by A ⊥⊥ Y a | X, and the third by
consistency.

The two identification results above suggest (at least) two different estimators for ψ1 = E(Y 1), for
example, namely:

ψ̂1 = Pn(Y | A = 1) versus ψ̂1 = Pn{Ê(Y | X,A = 1)}.

In what follows we will consider which estimator is “better”, and whether and how covariate informa-
tion should be incorporated.

3.2 Logistic Regression & Collapsibility

In this section suppose Y ∈ {0, 1} is a binary outcome. With binary outcomes, perhaps the most
common approach in practice is to assume the logistic regression model

logit P(Y = 1 | X,A) = β0 + β1A+ βT

2X,

and call β1 “the effect” of treatment. What “effect” does this actually represent?

First, this may not be an effect at all, because the logistic model is probably not exactly correct
in practice. In reality such a model probably leaves out important covariate interactions, higher-order
terms, covariate-treatment interactions, non-logit links, etc. We often fit logistic regression models be-
cause they are fast and easy, not because they are particularly realistic.
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Nevertheless, for the sake of argument, assume that the logistic model is correct. Then

exp(β1) =
odds(Y = 1 | X,A = 1)

odds(Y = 1 | X,A = 0)
=

odds(Y 1 = 1 | X)

odds(Y 0 = 1 | X)
,

where in the second equality we used consistency and randomization. This is a conditional odds ratio
(OR). Importantly

E(Y 1 − Y 0) = P(Y 1 = 1)− P(Y 0 = 1) ̸= odds(Y 1 = 1 | X)

odds(Y 0 = 1 | X)
,

hence it is not an average treatment effect (on the risk difference scale). In fact, even if the model is
correct, in general

odds(Y 1 = 1)

odds(Y 0 = 1)
̸= odds(Y 1 = 1 | X)

odds(Y 0 = 1 | X)
,

and it is neither a population odds ratio effect (even if the conditional OR is constant). This follows
since

odds(Y 1 = 1) =
P(Y 1 = 1)

P(Y 1 = 0)
=

P(Y = 1 | A = 1)

P(Y = 0 | A = 1)

=
E{P(Y = 1 | X,A = 1)}
E{P(Y = 0 | X,A = 1)}

=
E{expit(β0 + β1 + βT

2X)}
1− E{expit(β0 + β1 + βT

2X)}

̸= expit{β0 + β1 + βT
2E(X)}

1− expit{β0 + β1 + βT
2E(X)}

= exp{β0 + β1 + βT

2E(X)},

since E{f(X)} ≠ f{E(X)} for nonlinear f . This is called the problem of non-collapsibility [Freedman,
2008, Greenland et al., 1999]. Thus we say the odds ratio is not collapsible since the average of the
conditional ORs is not generally equal to the marginal OR. In fact the marginal OR can be bigger or
smaller than all of the conditional ORs; this is counterintuitive.

The main take-away is that coefficients in general non-linear models are conditional and do not
correspond to marginal (i.e., population averaged) effects – even if the model is correct. This subtlety
is often missed.

However, this problem does not arise in a (correctly specified) linear model, e.g., of the form

E(Y | X,A) = β0 + β1A+ βT

2X.

If the above model is correct, then

β1 = E(Y | X,A = 1)− E(Y | X,A = 0),

so the coefficient is a conditional effect. Moreover, under the linear model assumption and A ⊥⊥ Y a | X,
we have

E(Y 1 − Y 0) = E{E(Y | X,A = 1)− E(Y | X,A = 0)} = β1,

therefore the parameter is also a marginal effect.

We have seen that going after coefficients in nonlinear regression models can be sub-optimal in ex-
periments. Namely, we typically have to assume the model is correct (a sometimes heroic assumption,
which is not guaranteed by randomization) and, even if the model is correct, the coefficient in that
case will be a conditional effect which does not correspond to a well-defined effect in the whole popula-
tion. In what follows we will discuss how to deal with the second issue, and then after that the first issue.
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3.3 Recovering Population Effects via Regression

In the previous section we saw that, under parametric model assumptions (with randomization), the
coefficient from a logistic regression model recovers a conditional odds ratio. Here we consider the
question of how we might use this fit to estimate a marginal average treatment effect.

First, when we fit a logistic (or any other) regression model we are estimating the conditional
expectation function

µa(x) = E(Y | X = x,A = a).

For example with logistic regression we estimate this function with

µ̂a(x) = expit(β̂0 + β̂1a+ β̂T

2 x)

for β̂ the maximum likelihood estimates. Now recall that under the randomization assumption A ⊥⊥
(Y a, X) (with consistency) the average treatment effect is given by (Proposition 4)

ψ = E(Y 1 − Y 0) = E{E(Y | X,A = 1)− E(Y | X,A = 0)},

which suggests the estimator

ψ̂ = Pn

{
µ̂1(X)− µ̂0(X)

}
=

1

n

n∑
i=1

{
µ̂1(Xi)− µ̂0(Xi)

}
.

This estimator is sometimes called the plug-in, g-computation, or standardization estimator. Conceptu-
ally, it is taking the estimated conditional effect µ̂1(x)− µ̂0(x) and standardizing it to the (empirical)
population distribution of covariates. You can also think of it as “imputing” an estimate of the effect
µ1(x)− µ0(x) for each person and averaging.

In practice one can fit a logistic regression and obtain predicted values under A = 1 and A = 0
separately, for everyone, regardless of actual observed treatment, then take the difference for each
person, and average across people. The Appendix provides code in R to recover population effects via
regression. Note there is no particular reason to favor logistic regression for constructing the regression
estimates µ̂a(x); one might instead consider linear regression, probit regression, regression trees, kernel
estimators, splines, generalized additive models, the lasso, boosting, random forests, neural networks,
deep learning, etc. However, we will see in Section 3.4 that this estimator can in general be improved.

Properties of the Plug-in Estimator In this section we analyze the simple plug-in estimator
ψ̂ = Pn{µ̂1(X) − µ̂0(X)} used above. Note that here µ̂a(X) need not be a logistic regression model,
but any regression model that estimates the conditional expectation µa(x) = E(Y | X = x,A = a).
We analyze the plug-in estimator by finding answers to three standard questions: Is the estimator
consistent? What is its convergence rate? What is its asymptotic limiting distribution?

Remark 8. Notice that if we let f̂ = µ̂1 − µ̂0, then ψ̂ = Pn(f̂) and ψ = E(f). Thus our estimator
is a sample average of an estimated function, and our target estimand is an expectation of the true
function f . Thus its performance will be very closely tied to the errors in estimating the function f
with f̂ . In the Appendix we give a short review and discussion of properties of estimated functions.

Consistency tells us whether our estimator is at least converging to the correct target as sample
size increases (the lowest bar we would hope an estimator would clear), convergence rates tell us how
quickly this convergence occurs (i.e., how much information in the sample does the estimator make
use of), and asymptotic distributions tell us whether our estimator is well-behaved enough to give us
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hope for constructing confidence intervals and doing inference.

More specifically, our goal will often be to express ψ̂−ψ as a (centered) sample average, plus some
noise. We know how to analyze sample averages, since for any fixed function g of the iid observations
Z, we have (Pn − P)g(Z) = (Pn − E)g(Z) = OP(1/

√
n) and in particular

√
n(Pn − P)g(Z) =

1√
n

n∑
i=1

[
g(Zi)− E{g(Z)}

]
⇝ N

(
0, var{g(Z)}

)
by the central limit theorem. Therefore the problem will be reduced to analyzing whatever the extra
noise is.

First we will introduce a foundational decomposition for ψ̂ (in fact, for any estimator that takes a
similar form); this will be crucial for many estimators we analyze throughout the chapter. More details
and review can be found in Kennedy [2022].

Lemma 1. Let ψ̂ = Pn(f̂) = 1
n

∑
i f̂(Zi) be an estimator of the generic expectation ψ = P(f) =

E{f(Z)} based on n samples (Z1, ..., Zn), where f̂ can be any estimator and f : Z 7→ R any function.
Then we have the decomposition

ψ̂ − ψ = Z∗ + T1 + T2, (4)

where

Z∗ = (Pn − P)f,

T1 = (Pn − P)(f̂ − f),

T2 = P(f̂ − f).

Proof. We have

ψ̂ − ψ = Pn(f̂)− P(f)

= (Pn − P)f̂ + P(f̂ − f)

= (Pn − P)(f̂ − f) + (Pn − P)f + P(f̂ − f)

≡ T1 + Z∗ + T2,

where the first line follows by definition, the second by adding and subtracting P(f̂) (which we recall
is not the same as E(f̂), see the Appendix), and the third by adding and subtracting the quantity
(Pn − P)f = (Pn − E)f = 1

n

∑
i[f(Xi)− E{f(Xi)}].

Lemma 1 applies to the plug-in estimator ψ̂ = Pn(f̂) if as before we let f̂ = µ̂1− µ̂0, and the target
parameter ψ = E(f) is the population expectation of the true function f . Consequently, Lemma 1
allows us to express our estimator as a centered sample average plus noise. The first term Z∗ in (4)
is a nice centered sample average, and therefore by the central limit theorem it behaves as a normally
distributed variable with variance var(f)/n, up to error oP(1/

√
n). Thus our problem is reduced to

analyzing the two noise terms, denoted T1 and T2.

Remark 9. Note that the decomposition in (4) only relied on the estimator being a sample average
of an estimated function f̂ , and on the estimand being an expectation of a true function f . There
was nothing special about ψ being the average treatment effect, or f being a regression function.
The decomposition (4) thus arises often, since many estimands are expected values of (sometimes
complicated) generic functions, which can be estimated by corresponding sample averages of estimates
of these functions.
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First, it turns out that the term T1 is typically of smaller order than even the Z∗ term. In fact,
T1 = oP(1/

√
n) under some regularity conditions, as long as f̂ is consistent for f in L2 norm, i.e., as

long as

∥f̂ − f∥22 =

∫
{f̂(x)− f(x)}2 dP(x) = oP(1),

(see Kennedy [2022]). Intuitively, however, this should not be too surprising, since T1 is a centered
sample average (just like Z∗), but in fact the quantity it is averaging is shrinking to zero with n (as
long as f̂ is tending to f). This is like taking larger and larger centered sample averages of a random
variable whose variance shrinks with n.

Now we turn to the last noise term T2, which is the really interesting one. For many estimators
we discuss in the chapter, the T2 term will be particularly crucial, driving the rate of convergence and
limiting distribution.

The Parametric Plug-in Estimator First we consider analyzing T2 = P(f̂ − f) in the case where
f̂ is estimated with a (correct) parametric model, i.e., where

f̂(x) = f(x; β̂),

for some finite-dimensional parameter β ∈ Rp. For example, when using the logistic regression model
as before, we would have f(x;β) = expit(β0 + β1 + βT

2 x) − expit(β0 + βT
2 x). Note in the parametric

case we can view

T2 = P(f̂ − f) =

∫
{f(x; β̂)− f(x;β)} dP(x) ≡ g(β̂)− g(β)

as a simple difference in functions β̂ and β, where the function g will be smooth if f is. Therefore we
will first understand the error between β̂ and β, and then use the delta method.

For most smooth parametric models, the estimator β̂ will solve an estimating equation based
on some mean-zero estimating function m that is smooth in β. For example, the logistic regression
estimator solves an estimating equation based on the estimating function (or score function)

m(Z;β) =

 1
A
X

{Y − expit(β0 + β1A+ βT

2X)
}
,

so that
Pn{m(Z; β̂)} = 0

by definition. The next result shows that such solutions to finite-dimensional estimating equations
behave like sample averages (for a proof, see Theorem 5.23 of van der Vaart [2000]).

Lemma 2. Suppose the estimator β̂ ∈ Rp solves an estimating equation so that Pn{m(Z; β̂)} = 0.
Assume m(z;β) ∈ Rp is Lipschitz in β, and that E{m(z;β)} is differentiable at the population β
satisfying E{m(Z;β)} = 0 with nonsingular derivative matrix. Then

β̂ − β = (Pn − P)

[{
∂E(m(Z;β))

∂βT

}−1

m(Z;β)

]
+ oP(1/

√
n), (5)

Corollary 1. Under the conditions of Lemma 2, the estimating equation estimator β̂ is root-n consis-
tent and asymptotically normal.
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Now we have all the tools we need to analyze the quantity P(f̂ − f) and thus the estimator ψ̂ in
the parametric case.

Theorem 3. Let f(x) = µ1(x) − µ0(x) and µa(x) = E(Y | X = x,A = a), so that ψ = E{f(X)}
is the average treatment effect. Assume the parametric model µa(x) = µa(x;β) for some β ∈ Rp, and
that the estimator β̂ satisfies the conditions of Lemma 2. Then

ψ̂ − ψ = (Pn − P)g(Z;β) + oP(1/
√
n),

where

g(z;β) = f(x;β) +
∂E{f(X;β)}

∂βT

{
∂E(m(Z;β))

∂βT

}−1

m(z;β),

and so is root-n consistent and asymptotically normal.

Proof. By Lemma 1 we have
ψ̂ − ψ = Z∗ + T1 + T2

where Z∗ = (Pn − P)f and T1 and T2 defined accordingly. By Lemma 2 we have

β̂ − β = (Pn − P)

[{
∂E(m(Z;β))

∂βT

}−1

m(Z;β)

]
+ oP(1/

√
n),

which also is enough to imply T1 = oP(1/
√
n). Further by the delta method we have

T2 = g(β̂)− g(β) = (Pn − P)

[
∂g(β)

∂βT

{
∂E(m(Z;β))

∂βT

}−1

m(Z;β)

]
+ oP(1/

√
n)

for g(β) = E{f(Z;β)}. Combining the terms gives the result.

To summarize, when µ̂ is estimated with a correct parametric model, the resulting plug-in esti-
mator ψ̂ = Pn(f̂) for f = µ1−µ0 is root-n consistent for the causal effect ψ and asymptotically normal.

When the parametric model for µ is correct, this plug-in estimator is most efficient (this follows
from classical low-dimensional parametric maximum likelihood theory); the intuition is that with a
correct model we can “predict” the treatment effect much more precisely than say with the difference-
in-means estimator. Further confidence intervals can be constructed using estimates of the closed-form
asymptotic variance given above, or via bootstrap (which is typically easier).

Of course, we may have serious doubts that our parametric models are actually correct, especially
when X contains some continuous covariates or is high-dimensional. At best, such models may be a
modestly biased approximation, but at worst – when very misspecified – they may irreparably bias our
estimation procedure, yielding estimates that are not only far away from the truth, but to an unknown
extent.

The Nonparametric Plug-in The discussion at the end of the previous section raises the question
of how the plug-in estimator would behave if we used a more flexible estimator to construct µ̂, say
random forests or the lasso or deep learning. In this case, the central limit theorem term Z∗ in the
decomposition (4) still behaves as a mean-zero normally distributed random variable with variance
var(f)/n, since it does not depend on the estimated f̂ . Further, even when µ is treated as a potentially
infinite-dimensional function and estimated flexibly and data-adaptively, the term T1 can still be of
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smaller order (though one may need to use sample splitting, as discussed in more detail in Kennedy
[2022] and later).

Unfortunately the picture is not as rosy for the important T2 term in (4). If all we know about the
flexible estimator f̂ is a high-level rates of convergence, say in L2 norm, then typically all we can say
about T2 is

T2 = P(f̂ − f) ≤
√

P{(f̂ − f)2} = ∥f̂ − f∥2,
where the second inequality uses Cauchy-Schwarz. This means in general we would expect the plug-in
estimator ψ̂ to inherit the (typically slow) rate of convergence of the nonparametric estimator f̂ . This
is a problem since for most realistic infinite-dimensional function classes the L2 error will be far away
from 1/

√
n. For example when f lies in a Hölder class with smoothness s (i.e., all partial derivatives

up to order s−1 are bounded and sth derivatives continuous) then for any estimator f̂ the rate cannot
be any faster than

∥f̂ − f∥2 ≳ n−s/(2s+d)

uniformly over the Hölder class [Tsybakov, 2009]; note this rate is always slower than
√
n. Neural net-

work classes are known for yielding dimension-independent rates [Györfi et al., 2002], but even these
are roughly of order n−1/4, somewhat of a far cry from 1/

√
n.

Further, when µ̂ is estimated flexibly with modern nonparametric tools, we do not only pay a price
in the rate of convergence – it will generally also be true that, even if we can derive a tractable limiting
distribution, there will be some smoothing bias, so confidence intervals will not be correctly centered
(even using the bootstrap) and thus will not cover at the nominal level. However, often complex non-
parametric estimators do not even yield tractable limiting distributions, even uncentered.

3.4 Efficient Model-Free Estimation

At this point it appears the analyst is in a bit of a quandary. One could use the simple difference-in-
means estimator, which is root-n consistent and asymptotically normal under no modeling assumptions;
however it completely ignores covariate information and so may be quite inefficient. Alternatively one
could model the regression function and use the plug-in estimator. However if parametric models are
used to achieve root-n rates and small confidence intervals, one risks bias due to model misspecifi-
cation; on the other hand, if one models the regression functions nonparametrically, then the curse
of dimensionality subjects us to slow rates of convergence, and at a loss for confidence intervals and
inference.

What should be done? Is there any way to get the best of both worlds, using the covariates to gain
efficiency over the difference-in-means estimator, but retaining its model-free benefits and not risking
bias?

The Doubly Robust Estimator It turns out there exists a bias-corrected estimator, whose validity
is based on randomization, yet which can incorporate regression predictions to increase efficiency:

ψ̂ = Pn

[{
µ̂1(X)− µ̂0(X)

}
+

(
A

π
− 1−A

1− π

){
Y − µ̂A(X)

}]
, (6)

where µ̂a(x) is an estimate of the regression function µa(x) = E(Y | X = x,A = a) and π = P(A = 1)
is the (known) randomization probability.

The estimator (6) can be viewed as the plug-in estimator Pn(µ̂1 − µ̂0) plus a “correction” term
that incorporates the randomization probabilities π. It goes by various names, including: model-
assisted Horvitz-Thompson, bias-corrected plug-in, semiparametric or semiparametric efficient, aug-
mented inverse-probability-weighted (AIPW), doubly robust, double machine learning, etc. We mostly
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refer to it as doubly robust.

The estimator (6) has an interesting and somewhat difficult-to-trace history across fields. Here is
an abbreviated and limited portion of its path across the literature: In survey sampling problems,
Cochran [1977] and others used simple regression models in an agnostic way to improve the efficiency
of the unbiased Horvitz-Thompson estimator from 1952. Robins and Rotnitzky [1995], Robins et al.
[1994, 1995] studied efficient semiparametric estimation in general missing data problems (extending
work by Bickel et al. [1993] and Pfanzagl [1982] and others), and presented a version of this estimator
(6) where nuisance quantities were estimated with parametric models. Robins and Wang [2000] started
referring to the estimator (6) as “doubly protected”, and Robins and Rotnitzky [2001] and Bang and
Robins [2005] as “doubly robust”. In a series of papers, Tsiatis and colleagues [Davidian et al., 2005,
Leon et al., 2003, Yang and Tsiatis, 2001, Zhang et al., 2008] applied the theory from Robins and others
to randomized experiments, focusing on efficiency concerns. These papers are a nice introduction to
the estimator (6) in the experimental setup. In the early to mid 2000s, van der Laan and Robins [2003]
and others started developing theory for the case where nuisance estimators such as µ̂a are estimated
nonparametrically. The estimator and related methods have been recently studied in econometrics
[Chernozhukov et al., 2018], with more of a focus on high-dimensional sparse models.

In fact it can be shown that any (regular)
√
n-consistent and asymptotically normal estimator

can be written in the form (6), for some choice of µ̂a [Tsiatis, 2006, van der Laan and Robins, 2003].
For example, the difference-in-means estimator is recovered if µ̂a = Pn(Y | A = a), and the Horvitz-
Thompson or inverse-probability-weighted estimator if µ̂a = 0. Shortly we will study some cases where,
surprisingly, the parametric plug-in takes this form with for example µ̂a = g(β̂0 + β̂1a+ β̂T

2 x). This is
one of the reasons it is a bit unclear where the estimator originated, since it includes many variants as
a special case.

Remark 10. As we did above, at several points in this chapter we will refer to regular estimators. For
the time being, a regular estimator can be taken to mean an estimator whose limiting distribution is
insensitive to local perturbations of the data-generating process. Imposing regularity rules out super-
efficient estimators, for example, which trade very good performance at a particular P for very bad
performance “near” P. More discussion can be found in Tsiatis [2006] and van der Vaart [2000].

As mentioned earlier, the estimator (6) can be interpreted as a corrected version of the plug-in
estimator ψ̂pi = Pn(µ̂1 − µ̂0) since

ψ̂ = ψ̂pi + Pn

[(
A

π
− 1−A

1− π

){
Y − µ̂A(X)

}]
,

where we will see the correction term removes any bias afflicting the regression estimator µ̂a.

Analogously, the doubly robust estimator can also be viewed as a corrected (or “augmented”) version
of the inverse-probability weighted (Horvitz-Thompson) estimator ψ̂ipw = Pn{

(
AY
π − 1−A

1−π

)
Y } since

ψ̂ = ψ̂ipw + Pn

[(
1− A

π

)
µ̂1(X)−

(
1− 1−A

1− π

)
µ̂0(X)

]
.

We know from the previous chapter that ψ̂ipw is already unbiased; thus the above augmentation term
is reducing variance rather than bias.

Remark 11. Note that the doubly robust estimator requires no extra model fitting beyond that already
required to construct the plug-in estimator. The appendix presents example code showing how to
correct the plug-in estimator in R.
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A natural question about the doubly robust estimator is: where does the correction come from,
and why does it take that specific form? A complete answer to this is non-trivial; however some short
discussion is still useful. The form of the correction comes from nonparametric efficiency theory for
functional estimation [Bickel et al., 1993, Kennedy, 2022, Tsiatis, 2006, van der Laan and Robins,
2003], and there are at least two high-level heuristics available. The first is that the average treatment
effect parameter ψ = ψ(P) = EP(µ1 − µ0) is a “smooth” functional, when viewed as a map from prob-
ability distributions P to the real line; and this smoothness allows for convenient and effective bias
correction. The second is that a randomized experiment with known treatment mechanism leads to a
semiparametric model for the distribution P from which we sample: part of the distribution P is known
(the conditional distribution of treatment given any covariates) while the rest is left unrestricted (the
covariate distribution and the conditional distribution of the outcome given covariates and treatment).
Under this semiparametric model, one can use tools from efficiency theory to derive the form of all
possible (regular) asymptotically normal estimators of the parameter ψ, and subsequently find the one
with the smallest variance.

Answering the question of why the correction works is easier than answering where it comes from.
This is the focus of the next section.

Remark 12. In what follows we consider the case where the regression estimator µ̂a is constructed from
a separate training sampleDn independent of the experimental sample Zn = {(X1, A1, Y1), ..., (Xn, An, Yn)}.
In practice one can simply randomly split the sample, using half as Dn for training and the other half
as Zn for estimation. Note that in this case, variance results should really be framed in terms of n/2
instead of n. However one can combat this loss of efficiency with an easy fix: after constructing the
sample-split estimator, swap the samples, using Zn for training and Dn for estimation, and then aver-
age the resulting estimators (similarly to k-fold sample-splitting). This approach recovers full sample
size efficiency [Chernozhukov et al., 2018, Kennedy, 2022, Robins et al., 2008, Zheng and van der Laan,
2010].

There are two reasons for doing sample splitting: the first is that the analysis is more straight-
forward, and the second is that it prevents overfitting and allows for the use of arbitrarily complex
estimators µ̂a (e.g., random forests, boosting, neural nets). Without sample splitting, one would have
to restrict the complexity of the estimator µ̂a via empirical process conditions. Intuitively, this is be-
cause the estimator ψ̂ is using the data twice: once to estimate the unknown function µa and once to
estimate the bias correction. Sample splitting ensures that these tasks are accomplished independently.

Properties of the Doubly Robust Estimator In this section we study the bias, variance, and
limiting distribution of the estimator (6).

As in our analysis of the plug-in estimator in the previous section, we note that our estimator can
be written as a sample average of an estimated function. Namely ψ̂ = Pn(f̂) where now f̂ = f(µ̂) ≡
f1(µ̂)− f0(µ̂) for

fa(µ) ≡ µa(X) +
1(A = a)

P(A = a)

{
Y − µA(X)

}
. (7)

First we tackle the bias of ψ̂ = Pn(f̂), under no modeling assumptions whatsoever.

Theorem 4. Consider an iid Bernoulli experiment with known P(A = 1) = π. Then the doubly robust
estimator ψ̂ in (6) is unbiased for the average treatment effect when the regression estimates µ̂a are
constructed from a separate independent sample.
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Proof. We derive the bias for ψ1 = E(Y 1) with ψ̂1 = Pn(f̂1) since the logic is exactly the same for
E(Y 0) and the difference ψ = ψ1 − ψ0. First note that for any µ1

P{f1(µ)} = P
[
µ1(X) +

A

π

{
Y − µ1(X)

}]
= P

[
µ1(X) +

π

π

{
µ1(X)− µ1(X)

}]
(8)

= E{µ1(X)} = ψ1,

where the second equality used iterated expectation and the Bernoulli randomization. Therefore we
have E(ψ̂1 | Dn) = P{f(µ̂1)} = ψ1, where the first equality uses the fact that µ̂a(x) is fixed given
independent Dn and the iid assumption, and the second (8).

Theorem 4 is a simple but powerful result. It shows the doubly robust estimator is exactly unbiased,
for any choice of regression estimator µ̂a. Hence, although the estimator ψ̂ exploits covariate informa-
tion, its bias is not at all affected by accidentally misspecified models or biased regression estimators
with slow convergence rates.

Remark 13. Theorem 4 also has an important implication for understanding the variance and limiting
distribution of ψ̂. Namely, the logic in the proof shows that

P{f(µ)} = ψ

for any (fixed) µ. This means that, since ψ̂ is a sample average of an estimated function and thus the
decomposition from Lemma 1 holds, we can write

ψ̂ − ψ = (Pn − P)(f̂ − f) + P(f̂ − f) + (Pn − P)f (9)
≡ T1 + T2 + Z∗

for any f = f(µ). Since it will be useful in our analysis for f̂ to be consistent for f , we will simply
define f = f(µ) to be the corresponding probability limit, i.e., by taking µa to be a fixed function such
that ∥µ̂a−µa∥ = oP(1). We will see that this will allow us to completely sidestep whether the estimator
µ̂a is consistent for the true regression function µa, and instead just require that it be consistent for
something.

Now we tackle the limiting distribution of ψ̂. Recall we know Z∗ in the decomposition (9) is asymp-
totically normal, so we only need to understand the T1 and T2 terms. First we provide a general analysis
of the first term T1 = (Pn − P)(f̂ − f) in that decomposition.

Lemma 3. Let Pn denote the empirical measure over Zn = (Z1, ..., Zn), and let f̂(z) be any function
estimated from a sample DN = (Zn+1, ..., Zn+N ), which is independent of Zn. Then

(Pn − P)(f̂ − f) = OP

(
∥f̂ − f∥√

n

)
.

Proof. See Kennedy et al. [2020].

Lemma 3 shows that T1 terms are asymptotically negligible, i.e., that T1 = oP(1/
√
n), as long as f̂

is consistent for f (or f in our case, which will hold by definition). The next result gives the limiting
distribution of the doubly robust estimator, under no assumptions beyond the experiment design (and
iid sampling) and that the regression estimators µ̂a converge to anything at any rate.
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Theorem 5. Consider an iid Bernoulli experiment with known P(A = 1) = π. Suppose the regression
estimators µ̂a are:

1. constructed from a separate independent sample, and
2. consistent (at any rate) for some functions µa (not necessarily the true regression functions µa)

in the sense that ∥µ̂a − µa∥ = oP(1).

Then the doubly robust estimator ψ̂ is root-n consistent and asymptotically normal with

√
n(ψ̂ − ψ)⇝ N

(
0, var(f)

)
,

where f = f(µ) is defined as in (7).

Proof. By Lemma 1 we can write the decomposition (9) with f = f(µ) for any µ. We will define µ as
the probability limit of µ̂, as in the statement of the theorem.

By Lemma 3, we have T1 = OP(∥f̂ − f∥/
√
n). Now note

∥f̂1 − f1∥2 =

∥∥∥∥{µ̂1 − µ1

}{
1− A

π

}∥∥∥∥2
=

(
var(A)
π2

)∫ {
µ̂1(x)− µ1(x)

}2

dP(x)

=

(
1− π

π

)
∥µ̂1 − µ1∥,2

where the second equality used the Bernoulli randomization. The same logic applies to ∥f̂0 − f0∥, and
so by the triangle inequality

T1 = OP

(
∥f̂ − f∥√

n

)
= OP

(
∥µ̂1 − µ1∥+ ∥µ̂0 − µ0∥√

n

)
,

which is oP(1/
√
n) since ∥µ̂a − µa∥ = oP(1) by definition. For the T2 term, we have P(f̂ − f) = 0 by

(8). This gives the result.

Theorem 5 shows that not only is the doubly robust estimator ψ̂ unbiased for any choice of regres-
sion estimator, it is also root-n consistent and asymptotically normal – even if the estimators µ̂a are
completely misspecified, and or converging at arbitrarily slow rates. This is a surprisingly impressive
result, given that essentially no model assumptions were used.

This immediately implies that distribution-free confidence intervals can be constructed as in the
following corollary.

Corollary 2. Under the assumptions of Theorem 5, a distribution-free asymptotic 95% confidence
interval for the average treatment effect ψ is given by

ψ̂ ± 1.96

√
v̂ar{f(µ̂)}

n
.

Further, finite-sample variance bounds can be constructed using the same logic as in the proof of
Theorem 5.
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Efficiency In the previous section we learned the surprising result that the sample-split doubly ro-
bust estimator is exactly unbiased for any choice of regression estimator µ̂a, and root-n consistent
and asymptotically normal as long as µ̂a converges to some fixed function at any rate. As would be
expected, the efficiency of the doubly robust estimator depends on the probability limits µa that the
regression estimators µ̂a converge to. This raises some important questions: What is the best possible
(i.e., most efficient) probability limit µa? Is the doubly robust estimator necessarily more efficient than
the difference-in-means or Horvitz-Thompson estimator? Since the difference-in-means and Horvitz-
Thompson estimators can be written as variants of the doubly robust estimator, for particular choices
of µ̂a, the best choice of µa will dominate others in this class.

The next result shows what one might expect: the best limit µa in terms of efficiency is the true
regression function µa (recall this limit is irrelevant for bias since ψ̂ is unbiased for any µ̂a).

Theorem 6. Define f(µ) as in (7). Then for any µ = (µ1, µ0) with µa : X 7→ R

var{f(µ)} ≥ var{f(µ)},

where µ = (µ1, µ0) denotes the true regression functions.

Proof. We have

var{f(µ)} = var
[
µ1(X)− µ0(X) +

(
A

π
− 1−A

1− π

){
Y − µA(X)

}]
= var{f(µ)}+ var

{(
1− A

π

)
(µ1 − µ1)−

(
1− 1−A

1− π

)
(µ0 − µ0)

}
+ 2cov

{
f(µ),

(
1− A

π

)
(µ1 − µ1)−

(
1− 1−A

1− π

)
(µ0 − µ0)

}
.

But the latter covariance is zero since

cov
{
f(µ),

(
1− A

π

)
(µ1 − µ1)−

(
1− 1−A

1− π

)
(µ0 − µ0)

}
= E

[
(µ1 − µ0 − ψ)

{(
1− A

π

)
(µ1 − µ1)−

(
1− 1−A

1− π

)
(µ0 − µ0)

}]
= 0,

where the second equality follows from iterated expectation since E{f(µ) | X,A} = µ1 −µ0, and since
A ⊥⊥ X so that E{Ag(X)} = πE{g(X)} for any g. This gives the result

Theorem 6 is critically informative about how to construct the doubly robust estimator ψ̂ in prac-
tice. Namely, it indicates that we should estimate the regression functions as flexibly as possible: bias
is zero regardless, and efficiency is optimized when the regression functions are estimated consistently.
This is a special case not often seen in statistics where there is essentially no penalty (at least asymp-
totically) for slow rates of convergence, and important benefits for consistency.

However the second question still remains: when based on a misspecified model for µa, does the
doubly robust estimator necessarily still improve efficiency (say relative to the Horvitz-Thompson
estimator)? In fact, this is not necessarily so, for particularly misspecified choices of µ̂a. However, there
are multiple approaches that can be used to guarantee efficiency gains. One simple option proposed by
Rubin and van der Laan [2008] is to posit a working parametric model µa(x) = µa(x;β), but rather
than estimating the parameters via maximum likelihood, instead estimate parameters by picking those
that minimize an estimator of the variance, i.e., use

β̃ = argmin
β

v̂ar
[
µ1(X;β)− µ0(X;β) +

(
A

π
− 1−A

1− π

){
Y − µA(X;β)

}]
.
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Other similar approaches are also possible [Tan, 2010].

Back to the Plug-In In the previous section we saw strong evidence that, if one wants to remain
agnostic about the data-generating process beyond the known randomization probabilities, retaining
robustness while exploiting covariate information to gain efficiency, then the doubly robust estimator
(6) using a flexible regression estimator is a good choice. In particular, it will be root-n consistent and
asymptotically normal as long as the regression estimator µ̂a converges to anything at any rate, and
if the regression estimator µ̂a is consistent for the true regression function (again at any rate) then it
will be asymptotically efficient.

However, in practice, applied researchers often use ordinary least squares or plug-in estimators
based on parametric models. Is there any basis for trusting such results? In fact, the following result
shows that some if not many parametric plug-in estimators can be represented in the doubly robust
form: they are doubly robust estimators disguised as plug-ins. (Though it is important to note that
this is not true of all plug-in estimators).

Proposition 5. Suppose regression predictions µ̂a satisfy

Pn

[
(1, A)T

{
Y − µ̂A(X)

}]
= 0 (10)

where A ⊥⊥ X is randomized according to a Bernoulli experiment. Then the parametric plug-in esti-
mator Pn{µ̂1(X)− µ̂0(X)} is numerically equivalent to the doubly robust estimator

Pn

[{
µ̂1(X)− µ̂0(X)

}
+

(
A

π
− 1−A

1− π

){
Y − µ̂A(X)

}]
.

Proof. Since Pn[(1, A)
T{Y − µ̂A(X)}] = 0 it follows that

1

π
Pn

[
A
{
Y − µ̂A(X)

}]
=

1

1− π
Pn

[
A
{
Y − µ̂A(X)

}]
=

1

1− π
Pn

[{
Y − µ̂A(X)

}]
= 0.

Therefore
Pn

[(
A

π
− 1−A

1− π

){
Y − µ̂A(X)

}]
= 0

so that the correction term in the doubly robust estimator is zero, and the plug-in and doubly robust
estimator are equal.

The sufficient condition (10) in Proposition 5 says that the µ̂a residuals must average to zero both in
the whole sample and among the treated. This will hold for example in generalized linear models with
an intercept and main effect term for treatment. Thus Proposition 5 shows that, although our earlier
analysis of the parametric plug-in appeared to hinge on restrictive parametric model assumptions, this
is not necessarily so – at least in Bernoulli experiments, and for plug-ins based on models with an
intercept and main effect for treatment. Such parametric plug-in estimators will be root-n consistent
for the average treatment effect (and asymptotically normal), even under misspecification of the regres-
sion estimator µ̂a, as long as it converges in probability to anything at any rate (a very weak condition).

Remark 14. Although a plug-in whose regression estimates satisfy (10) will take on all the advantageous
robustness and efficiency properties of the doubly robust estimator, note that variance estimates must
be based on the doubly robust variance as in Corollary 2. Otherwise corresponding confidence intervals
and hypothesis tests may not be valid.
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Remark 15. The condition (10) is generally not enough to ensure that a plug-in will be doubly robust
outside of Bernoulli experiments, e.g., if treatment is not completely independent of covariates. For
example, in conditionally randomized experiments, plug-ins would in general require correctly specified
outcome regression models for fast root-n rates.

4 Selected Advanced Topics

4.1 Conditional Randomization

In conditionally randomized experiments, the randomization probabilities can differ by covariate values,
e.g., in a stratified Bernoulli experiment one sets

P(A = 1 | X = x, Y a) = π(x)

where the function π(x) can vary with x (recall π(x) = π in a Bernoulli experiment).

Experiments may use conditional or stratified randomization to improve efficiency (e.g., by treating
more units at covariate values where treated outcomes are more variable than control outcomes), or
to improve subject outcomes (e.g., by treating more units at covariate values where treated outcomes
are likely to be higher than control outcomes, and treating fewer when treatment is ineffective or even
harmful).

Doubly robust estimators take the same form as (6), but replace π with π(x), i.e.,

Pn

[{
µ̂1(X)− µ̂0(X)

}
+

{
A

π(X)
− 1−A

1− π(X)

}{
Y − µ̂A(X)

}]
and the logic of the theoretical analysis is the same as well.

There are some important differences between simple Bernoulli experiments and conditionally ran-
domized designs, however. First, the difference-in-means estimator is no longer a valid estimator, since
it is no longer the case that A ⊥⊥ Y a or A ⊥⊥ (X,Y a); instead, in a conditionally randomized ex-
periment it only holds that A ⊥⊥ Y a | X. Second, as mentioned above, plug-in estimators are not in
general doubly robust in conditionally randomized designs, even when they satisfy the condition (10);
this is because the randomization probabilities cannot be brought outside the average as in the proof
of Proposition 5.

4.2 Cluster Randomized Trials

Another important and common experimental design is the cluster randomized trial, in which treat-
ments are randomized to groups of individuals (e.g., states, hospitals, schools, etc.). Importantly, in
this setting there is no variation in treatment within a cluster (only across clusters); thus all individuals
in a particular cluster receive the same treatment. Hence the data structure is n observations of

Zi = {Xi = (Vi, Xi1, ..., XiNi), Ai, Yi = (Yi1, ..., YiNi)},

where Vi denotes cluster-level covariates for the ith cluster, Xij denotes covariates measured on the jth
individual in cluster i, Ni is the number of individuals in cluster i, Ai is an indicator of whether cluster
i received treatment, and Yij is the outcome for the jth individual in cluster i. Here randomization
ensures that for each i = 1, ..., n

Ai ⊥⊥ (Y a
i1, ...., Y

a
iNi

) | Vi, (Xi1, ..., XiNi
).
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It is commonly assumed that the cluster observations Zi are independent and identically drawn from
some target population, while units within clusters can be arbitrarily dependent. (However it is also
possible to conduct design-based inference only using the treatment distribution).

One can consider average effects defined via expected values of quantities like

1

n

n∑
i=1

1

Ni

Ni∑
j=1

Y a
ij ,

i.e., the average outcome if all individuals in all clusters received treatment A = a. For example letting
Y

a

i = 1
Ni

∑Ni

j=1 Y
a
ij denote the average outcome in cluster j, the expected value of the above can be

written E(Y a
) if clusters are independent and identically distributed. Letting Y i =

1
Ni

∑Ni

j=1 Yij denote
the average outcome in cluster i, a doubly robust estimator analogous to (6) is given by

1

n

n∑
i=1

[{
Ê(Y i | Xi, Ai = 1)− Ê(Y i | Xi, Ai = 0)

}
+

(
Ai

π
− 1−Ai

1− π

){
Y i − Ê(Y i | Xi, Ai)

}]
,

with analogous variance estimators and limiting distributions defined as in previous sections. Note that
the regression predictions here are E(Y i | Xi, Ai) =

1
Ni

∑Ni

j=1 E(Yij | Xi, Ai), which can be estimated
by regressing the average cluster outcomes on all cluster-level and individual-level covariates (for ev-
eryone in the cluster, as well as treatment), since Xi = (Vi, Xi1, ..., XiNi). This would in general be
a high-dimensional regression problem, and therefore sometimes dimension-reducing independence as-
sumptions are employed (e.g., assuming individuals’ outcomes are conditionally independent of others’
covariate values).

Finally we note that there are important challenges unique to cluster randomized trials, including
for example alternative definitions of causal effects and multiple possible asymptotic regimes and in-
dependence assumptions; we refer to Balzer et al. [2019, 2021], Benitez et al. [2021] for more details.

4.3 Interference

So far we have relied on the assumption that the potential outcomes of unit i do not depend on treat-
ments assigned to units j ̸= i, via the consistency assumption that Y = Y a whenever A = a. However,
this may be unrealistic in settings where subjects are connected in a network, so that there is interfer-
ence between units. For example in an experiment studying the effectiveness of a vaccine, whether an
individual becomes sick depends not only on their own vaccination status, but also on the vaccination
status of their community. For an example related to AI for social impact, consider an evaluation of
whether intelligent tutoring systems improve student outcomes [Feng et al., 2014]. There could be
spillover effects from the treatment into control groups if, for example, control students studied with
the treated, e.g., if the students from the treatment group shared their knowledge indirectly with their
control peers.

With intereference, the potential outcome for unit i can depend on the treatment assignment of
other units (potentially all other units), and so potential outcomes need to be indexed by these other
treatment assignments. For example the potential outcome for subject i if all n subjects were treated
at levels (a1, a2, ..., an) ≡ an can be written as

Yi(a
n)

(we move from subscripts to parentheses to ease notation). Letting An = (A1, ..., An) denote the vector
of observed treatment assignments for all n units, the observed outcome is then given by Yi = Yi(A

n).
If every subject’s outcome can depend on all other subjects’ treatments, there would be no way to
estimate treatment effects without very strong assumptions. Thus one can also introduce an n × n
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adjacency matrix M whose elements Mij = 1 if subjects i and j are connected, and are zero otherwise.

The earliest work on interference (e.g., Hudgens and Halloran [2008]) typically considered partial
interference, where there are natural groups (e.g., households, classrooms), and interference can occur
within but not across groups. In this setting we can let ai = {aj : Mij = 1} denote the treatments of
those units in the same group as subject i, and then

Yi(a
n) = Yi(ai, ai),

i.e., unit i’s outcome is only affected by treatment assignments of those units in the same group. One
can then consider for example individual direct effects of treatment

Yi(ai = 1, ai)− Yi(ai = 0, ai)

which represents how unit i’s outcome would change if they received treatment versus control, but all
other units’ treatments in their group remained unchanged. Similarly an indirect effect is

Yi(ai = 0, ai)− Yi(ai = 0, a′i)

which represents how unit i’s outcome would change if they received control but others’ assignments
in their group changed from ai to a′i. Hudgens and Halloran [2008] provide unbiased estimators and
inferential tools for averages of the above direct and indirect effects in two-stage randomized experi-
ments, where for example groups are randomized to receive a higher or lower proportion of treatment,
with individuals within groups randomized based on that proportion.

For more recent work on interference in more complex network settings we refer to [Aronow and
Samii, 2017, Ogburn et al., 2017], for example.

5 Discussion

In this chapter we have reviewed concepts behind and methods for the statistical analysis of random-
ized experiments. After starting with simple randomized experiments consisting of only treatment and
outcome data collected, we paid special attention to the common setting where auxiliary covariate
information is also available. In these cases one needs to take special care to exploit the covariate in-
formation for efficiency gains, while relying solely on randomization for inference and not risking bias
from model misspecification. We showed in particular how a semiparametric doubly robust estimator
allows for such balance of efficiency and robustness.

There are many crucial topics beyond the scope of this chapter, including noncompliance, missing
data, longitudinal treatments, heterogeneous effect estimation, and more. For these and other topics,
as well as more details on concepts included here, we refer to Hernán and Robins [2010], Imbens and
Rubin [2015], Rosenbaum [2002], Tsiatis [2006], van der Laan and Robins [2003] and other similar
resources, such as those mentioned in the text.
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6 Appendix

6.1 Notation

Y a the counterfactual/potential outcome of Y under A = a
X ⊥⊥ Y | Z X is independent of Y given Z

iid independent and identically distributed
Pn the empirical measure, so 1

n

∑
i f(Zi) = Pn{f(Z)} = Pn(f)

Xn ⇝ Y Xn converges in distribution to Y
Xn = oP(rn) Xn/rn converges to zero in probability, i.e., Xn/rn

p→ 0
Xn = OP(rn) Xn/rn is bounded in probability
∥f̂ − f∥1 L1 distance:

∫
|f̂(x)− f(x)| dP(x)

∥f̂ − f∥2 L2 distance:
√∫

{f̂(x)− f(x)}2 dP(x)
∥f̂ − f∥∞ L∞ distance: supx∈X |f̂(x)− f(x)|

P(f̂)
∫
f̂(z) dP(z), also written P{f̂(Z)}

6.2 Estimated functions

Since many analyses involve differences between an estimated function f̂ and some true function f , i.e.,
errors in estimating f with f̂ , we will need a notion of consistency for random functions f̂ . Recall that
a scalar (or Euclidean) estimator ψ̂ is consistent if ψ̂−ψ = oP(1), i.e., if ψ̂ converges to ψ in probability.

For functions we can define an appropriate (scalar) distance measure, and then consistency will
be defined as in the scalar case. Some popular distance measures for functions are the L1, L2, or L∞
distances defined in the notation table above. Note that all of these distances are themselves random
variables, since they depend on the estimated f̂ . Now we are ready to define consistency of an estimated
function.

Definition 2. An estimated function f̂(x) is consistent for a fixed target f(x) in distance measure
d(·, ·) if

d(f̂ , f) = oP(1).

Similarly, f̂ converges at rate rn → ∞ to f in distance d if

d(f̂ , f) = oP(1/rn).

In addition to having a notion of consistency or convergence for estimated functions f̂ , it will also be
useful for us to have some special notation for the expected value over a random function’s argument,
conditioning on the randomness in the function.

Definition 3. For an estimated function f̂(x) built from a sample Zn = (Z1, ..., Zn) we use the nota-
tion

P(f̂) = P{f̂(Z)} ≡
∫
f̂(z) dP(z) = E

{
f̂(Z)

∣∣∣ Zn
}

to denote expectations over a new independent observation Z, conditioning on the sample Zn.
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Remark 16. The heuristic interpretation of P(f̂) is as follows: you construct the function f̂(z) from a
sample Zn, and then take its average over new repeated independent draws of the argument Z. It is
important to note that, for a fixed function f(z) we have

E{f(Z)} = P(f),

whereas for a random estimated function f̂(z) depending on a sample Zn, we have

E{f̂(Z)} = E
[
E
{
f̂(Z)

∣∣∣ Zn
}]

̸= P(f̂).

In particular, the quantity P(f̂) on the right-hand-side is random (through its dependence on f̂ and
Zn), whereas the quantities on the left-hand-side are fixed.

6.3 R Code

Testing Fisher’s Sharp Null Consider the following completely randomized experiment:

> set.seed(100)
> ## simulate fake data
> n <- 10; a <- rep(c(1,0),5); y <- a*rnorm(n,1)+(1-a)*rnorm(n,-1)
> cbind(a,y)

a y
[1,] 1 0.4978076
[2,] 0 -0.9037255
[3,] 1 0.9210829
[4,] 0 -0.2601595
[5,] 1 1.1169713
[6,] 0 -1.0293167
[7,] 1 0.4182093
[8,] 0 -0.4891437
[9,] 1 0.1747406

[10,] 0 1.3102968
>
> ## compute test statistic
> (tobs <- abs(mean(y[a==1])-mean(y[a==0])))
[1] 0.9001721

Then we can test Fisher’s Sharp Null in R with:

> ## permute treatments to simulate null
> t <- NULL; for (j in 1:10000){
+ asim <- sample(a)
+ t <- c(t, abs(mean(y[asim==1])-mean(y[asim==0]))) }
>
> ## compute p-value
> mean(t>=tobs)
[1] 0.0837

Recovering Population Effects via Regression In R we can fit a logistic regression model and
evaluate it at the observed (X1, A1), ..., (Xn, An) values with the predict command, as in:

lrmod <- glm(y ~ x+a, family=binomial)
muhat <- predict(lrmod, type="response")
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Note that the predict function outputs predicted values under the observed treatment; in contrast
here one needs predicted values under A = 1 and A = 0 separately, so you need the newdata argument.
Here is some example code for a simulated dataset:

> cbind(x,a,y)
x a y

[1,] -0.44577826 0 0
[2,] -1.20585657 0 0
[3,] 0.04112631 1 1
[4,] 0.63938841 0 0
[5,] -0.78655436 0 1
[6,] -0.38548930 0 1
[7,] -0.47586788 1 0
[8,] 0.71975069 1 1
[9,] -0.01850562 1 1

...
[100,] 2.01893816 0 1
>
> mumod <- glm(y~x+a, family=binomial)
>
> mu1hat <- predict(mumod, newdata=data.frame(x,a=1) ,type="response")
> mu0hat <- predict(mumod, newdata=data.frame(x,a=0), type="response")
>
> cbind(x,a,y, mu1hat, mu0hat, mu1hat-mu0hat)

x a y mu1hat mu0hat
1 -0.44577826 0 0 0.8178912 0.5709608 0.2469305
2 -1.20585657 0 0 0.7793358 0.5113598 0.2679760
3 0.04112631 1 1 0.8397107 0.6081932 0.2315174
4 0.63938841 0 0 0.8635670 0.6522366 0.2113304
5 -0.78655436 0 1 0.8012901 0.5443888 0.2569013
6 -0.38548930 0 1 0.8207133 0.5756239 0.2450893
7 -0.47586788 1 0 0.8164699 0.5686286 0.2478412
8 0.71975069 1 1 0.8665332 0.6579775 0.2085556
...
100 2.01893816 0 1 0.9073274 0.7436597 0.1636677
>
> mean(mu1hat-mu0hat)
[1] 0.2303284

So for the above simulated dataset, the estimated average treatment effect using logistic regression
is ψ̂ = 0.23.

Doubly Robust Estimator Here is example code showing how to correct the plug-in estimator we
constructed using the doubly robust estimator:

> cbind(x,a,y)[1:5,]
x a y

[1,] -0.44577826 0 0
[2,] -1.20585657 0 0
[3,] 0.04112631 1 1
[4,] 0.63938841 0 0
[5,] -0.78655436 0 1

>
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> mumod <- glm(y~x+a, family=binomial)
> mu1hat <- predict(mumod, newdata=data.frame(x,a=1) ,type="response")
> mu0hat <- predict(mumod, newdata=data.frame(x,a=0), type="response")
>
> pi <- 0.5; muahat <- a*mu1hat + (1-a)*mu0hat
>
> mean( (mu1hat-mu0hat) + (a/pi - (1-a)/(1-pi)) * (y-muahat) )
[1] 0.2303284
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