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1 Introduction

1 The wide-spread availability of cell phones has allowed non-profits to deliver
targeted health information via voice or text messages to beneficiaries in un-
derserved communities, often with significant demonstrated benefits to those
communities [17, 29]. We focus in particular on non-profits that target improv-
ing maternal and infant health in low-resource communities in the global south.
These non-profits deliver ante- and post-natal care information via voice and
text to prevent adverse health outcomes [2, 14,15].

Unfortunately, such information delivery programs are often faced with a
key shortcoming: a large fraction of beneficiaries who enroll may drop out or
reduce engagement with the information program. Yet non-profits often have
limited health-worker time available on a periodic (weekly) basis to help prevent
engagement drops. More specifically, there is limited availability of health-worker
time where they can place crucial service calls (phone calls) to a limited number
of beneficiaries, to encourage beneficiaries’ participation, address complaints and
thus prevent engagement drops.

Optimizing limited health worker resources to prevent engagement drops re-
quires that we prioritize beneficiaries who would benefit most from service calls
on a periodic basis. We model this resource optimization problem using Restless
Multi-Armed Bandits (RMABs), with each beneficiary modeled as an RMAB
arm. RMABs have been well studied for allocation of limited resources moti-
vated by a myriad of application domains including preventive interventions for
healthcare [25], planning anti-poaching patrols [32], machine repair and sen-
sor maintenance [13] and communication systems [34]. However, RMABs have
rarely seen real-world deployment, and to the best of our knowledge, never been
deployed in the context of large-scale public health applications.

This chapter presents first results of an RMAB system in real-world public
health settings. Based on available health worker time, RMABs choose m out of
N total beneficiaries on a periodic basis for service calls, where the m are chosen
to optimize prevention of engagement drops. The chapter presents two main
contributions. First, previous work often assumes RMAB parameters as either
known or easily learned over long periods of deployment. We show that neither
1 This work was pursued when Aditya was an intern at Google Research.
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assumption holds in our real-world contexts; instead, we present clustering of
offline historical data as a novel approach to infer unknown RMAB parameters.

Our second contribution is a real-world evaluation showing the benefit of our
RMAB system, conducted in partnership with ARMMAN2, an NGO in India
focused on maternal and child care. ARMMAN conducts a large-scale health
information program, with concrete evidence of health benefits, which has so
far served over a million mothers. As part of this program, an automated voice
message is delivered to an expecting or new mother (beneficiary) over her cell
phone on a weekly basis throughout pregnancy and for a year post birth in a
language and time slot of her preference.

Unfortunately, ARMMAN’s information delivery program also suffers from
engagement drops. Therefore, in collaboration with ARMMAN we conducted a
service quality improvement study to maximize the effectiveness of their service
calls to ensure beneficiaries do not drop off from the program or stop listening
to weekly voice messages. More specifically, the current standard of care in AR-
MMAN’s program is that any beneficiary may initiate a service call by placing a
so called “missed call”. This beneficiary-initiated service call is intended to help
address beneficiaries’ complaints and requests, thus encouraging engagement.
However, given the overall decreasing engagement numbers in the current setup,
key questions for our study are to investigate an approach for effectively con-
ducting additional ARMMAN-initiated service calls (these are limited in num-
ber) to reduce engagement drops. To that end, our service quality improvement
study comprised of 23,003 real-world beneficiaries spanning 7 weeks. Beneficia-
ries were divided into 3 groups, each adding to the current standard of care. The
first group exercised ARMMAN’s current standard of care (CSOC) without ad-
ditional ARMMAN-initiated calls. In the second, the RMAB group, ARMMAN
staff added to the CSOC by initiating service calls to 225 beneficiaries on average
per week chosen by RMAB. The third was the Round-Robin group, where the
exact same number of beneficiaries as the RMAB group were called every week
based on a systematic sequential basis.

Results from our study demonstrate that RMAB provides statistically signifi-
cant improvement over CSOC and round-robin groups. This improvement is also
practically significant — the RMAB group achieves a ∼ 30% reduction in en-
gagement drops over the other groups. Moreover, the round-robin group does not
achieve statistically significant improvement over the CSOC group, i.e., RMAB’s
optimization of service calls is crucial. To the best of our knowledge, this is the
first large-scale empirical validation of use of RMABs in a public health con-
text. Based on these results, the RMAB system is currently being transitioned
to ARMMAN to optimize service calls to their ever growing set of beneficiaries.
Additionally, this methodology can be useful in assisting engagement in many
other awareness or adherence programs, e.g., [6, 36].

2 https://armman.org/



Title Suppressed Due to Excessive Length 3

2 Related Work

Patient adherence monitoring in healthcare has been shown to be an important
problem [24], and is closely related to the churn prediction problem, studied
extensively in the context of industries like telecom [8], finance [33,42], etc. The
healthcare domain has seen several studies on patient adherence for diseases
like HIV [38], cardiac problems [7, 35], Tuberculosis [19, 30], etc. These studies
use a combination of patient background information and past adherence data,
and build machine learning models to predict future adherence to prescribed
medication 3. However, such models treat adherence monitoring as a single-
shot problem and are unable to appropriately handle the sequential resource
allocation problem at hand. Additionally, the pool of beneficiaries flagged as
high risk can itself be large, and the model can not be used to prioritize calls on
a periodic basis, as required in our settings.

Campaign optimization (via phone outreach) has also been studied previ-
ously. Most existing works [9,20] however, rely on the availability of a customer
social network based on preferences, behavior or demographics, to help identify
the set of key customers who will increase the reach of the campaign. In our do-
mains of interest, there is no evidence of a social network among the beneficiaries,
so such campaign optimization techniques are inapplicable. Furthermore, cam-
paign optimization relies on single-shot interventions for optimization, whereas,
our problem requires tracking progress of beneficiaries over multiple timesteps.

The Restless Multi-Armed Bandit (RMAB) framework has been popularly
adopted to tackle such sequential resource allocation problems [16, 40]. Com-
puting the optimal solution for RMAB problems is shown to be PSPACE-hard.
Whittle proposed an index-based heuristic [40], that can be solved in polynomial
time and is now the dominant technique used for solving RMABs. It has been
shown to be asymptotically optimal for the time average reward problem [39],
and other families of RMABs arising from stochastic scheduling problems [13].
Several works as listed in Section 1, show applicability of RMABs in different
domains but these unrealistically assume perfect knowledge of the RMAB pa-
rameters, and have not been tested in real-world contexts. [3,5], present a Whit-
tle Index-based Q-learning approach for unknown RMAB parameters. However,
their techniques either assume identical arms or rely on receiving thousands of
samples from each arm, which is unrealistic in our setting, given limited overall
stay of a beneficiary in an information program — a beneficiary may drop out
or stop engaging with the program few weeks post enrollment unless a service
call convinces them to do otherwise. Instead, we present a novel approach that
applies clustering to the available historical data to infer model parameters.

Clustering in the context of Multi-Armed Bandit and Contextual Bandits
has received significant attention in the past [11, 21, 22, 43], but these settings
do not consider restless bandit problems. [27] tackles a non-stationary setup

3 Similarly, in our previous preliminary study [28] published in a non-archival setting,
we used demographic and message features to build models for predicting beneficia-
ries likely to drop-off from ARMMAN’s information program.
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with stochastic rewards, while [4] infers model parameters from independent
studies in absence of historic data. In contrast, we focus on learning RMAB
parameters using clustered historic beneficiary data. [23, 44] propose building
predictive models per beneficiary in an online fashion, which is infeasible in our
setup given the short stay of the beneficiaries.

3 Background: Restless Multi-Armed Bandits

An RMAB instance consists of N independent 2-action Markov Decision Pro-
cesses (MDP) [31], where each MDP is defined by the tuple {S,A, R,P}. S
denotes the state space, A is the set of possible actions, R is the reward function
R : S × A × S → R and P represents the transition function. We use Pαs,s′ to
denote the probability of transitioning from state s to state s′ under the action
α. The policy π, is a mapping π : S → A that selects the action to be taken
at a given state. The total reward accrued can be measured using either the
discounted or average reward criteria to sum up the immediate rewards accrued
by the MDP at each time step. Our formulation is amenable to both, although
we use the discounted reward criterion in our study.

The expected discounted reward starting from state s0 is defined as V πβ (s0) =

E [
∑∞
t=0 β

tR(st, π(st), st+1|π, s0)] where the next state is drawn according to
st+1 ∼ Pπ(st)st,st+1 , β ∈ [0, 1) is the discount factor and actions are selected according
to the policy mapping π. The planner’s goal is to maximize the total reward.

4 Problem Statement

We model the engagement behavior of each beneficiary by an MDP correspond-
ing to an arm of the RMAB. Pulling an arm corresponds to an active action, i.e.,
making a service call (denoted by α = a), while α = p denotes the passive action
of abstaining from a call. The state space S consists of binary valued states, s,
that account for the recent engagement behavior of the beneficiary; s ∈ [NE,E]
(or equivalently, s ∈ [0, 1]) where E and NE denote the ‘Engaging’ and ‘Not
Engaging’ states respectively. For example, in our domain, ARMMAN considers
that if a beneficiary stays on the automated voice message for more than 30 sec-
onds (average message length is 1 minute), then the beneficiary has engaged. If a
beneficiary engages at least once with the automated voice messages sent during
a week, they are assigned the engaging (E) state for that time step and non-
engaging (NE) state otherwise. For each action α ∈ A, the beneficiary states
follow a Markov chain represented by the 2-state Gilbert-Elliot model [12] with
transition parameters given by Pαss′ , as shown in Figure 1. With slight abuse of
notation, the reward function R(·) of nth MDP is simply given by Rn(s) = s for
s ∈ {0, 1}.

We adopt the Whittle solution approach for solving the RMAB. It hinges
around the key idea of a “passive subsidy”, which is a hypothetical reward offered
to the planner, in addition to the original reward function for choosing the passive
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Fig. 1: The beneficiary transitions from a current state s to a next state s′ under
action α, with probability Pαss′ .

action. The Whittle Index is then defined as the infimum subsidy that makes
the planner indifferent between the ‘active’ and the ‘passive’ actions, i.e.,:

W (s) = infλ{λ : Qλ(s, p) = Qλ(s, a)} (1)

We assume the planner has access to an offline historical data set of beneficia-
ries, Dtrain. Each beneficiary data point Dtrain[i] consists of a tuple, 〈f, E〉, where
f is beneficiary i’s feature vector of static features, and E is an episode storing
the trajectory of (s, α, s′) pairs for that beneficiary, where s denotes the start
state, α denotes the action taken (passive v/s active), and s′ denotes the next
state that the beneficiary lands in after executing α in state s. We assume that
these (s, α, s′) samples are drawn according to fixed, latent transition matrices
P ass′ [i] and P

p
ss′ [i] (corresponding to the active and passive actions respectively),

unknown to the planner, and potentially unique to each beneficiary.
Given Dtrain, we now consider a new beneficiary cohort Dtest, consisting of

N beneficiaries, marked {1, 2, . . . , N}, that the planner must plan service calls
for. The MDP transition parameters corresponding to beneficiaries in Dtest are
unknown to the planner, but assumed to be drawn at random from a distribution
similar to the joint distribution of features and transition parameters of benefi-
ciaries in the historical data distribution. We assume the planner has access to
the feature vector f for each beneficiary in Dtest.

We now define the service call planning problem as follows. The planner has
upto m resources available per round, which the planner may spend towards
delivering service calls to beneficiaries. Beneficiaries are represented by N arms
of the RMAB, of which the planner may pull upto m arms (i.e., m service calls)
at each time step. We consider a round or timestep of one week which allows
planning based on the most recent engagement patterns of the beneficiaries.

5 Method

Figure 2 shows our overall solution methodology. We use clustering techniques
that exploit historical dataDtrain to estimate an offline RMAB problem instance
relying solely on the beneficiaries’ static features and state transition data. This
enables overcoming the challenge of limited samples (time-steps) per beneficiary.
Based on this estimation, we use the Whittle Index approach to prioritize service
calls.
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Fig. 2: RMAB Training and Testing pipelines proposed

5.1 Clustering Methods

We use historical data Dtrain to learn the impact of service calls on transition
probabilities. While there is limited service call data (active transition samples)
for any single beneficiary, clustering on the beneficiaries allows us to combine
their data to infer transition probabilities for the entire group. Clustering offers
the added advantage of reducing computational cost for resource limited NGOs;
since all beneficiaries within a cluster share identical transition probability values
we can compute their Whittle index all at once. We present four such clustering
techniques below:

(i). Features-only Clustering (FO): This method relies on the correlation be-
tween the beneficiary feature vector f and their corresponding engagement be-
havior. We employ k-means clustering on the feature vector f of all beneficia-
ries in the historic dataset Dtrain, and then derive the representative transition
probabilities for each cluster by pooling all the (s, α, s′) tuples of beneficiaries
assigned to that cluster. At test time, the features f of a new, previously un-
seen beneficiary in Dtest map the beneficiary to their corresponding cluster and
estimated transition probabilities.

(ii). Feature + All Probabilities (FAP) In this 2-level hierarchical clustering
technique, the first level uses a rule-based method, using features to divide ben-
eficiaries into a large number of pre-defined buckets, B. Transition probabilities
are then computed by pooling the (s, α, s′) samples from all the beneficiaries in
each bucket. Finally, we perform a k-means clustering on the transition proba-
bilities of these B buckets to reduce them to k clusters (k � B). However, this
method suffers from several smaller buckets missing or having very few active
transition samples.

(iii). Feature + Passive Probabilities (FPP): This method builds on the FAP
method, but only considers the passive action probabilities to preclude the issue
of missing active transition samples.
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(iv). Passive Transition-Probability based Clustering (PPF): The key motiva-
tion here is to group together beneficiaries with similar transition behaviors,
irrespective of their features. To this end, we use k-means clustering on passive
transition probabilities (to avoid issues with missing active data) of beneficiaries
in Dtrain and identify cluster centers. We then learn a map φ from the feature
vector f to the cluster assignment of the beneficiaries that can be used to infer
the cluster assignments of new beneficiaries at test-time solely from f . We use a
random forest model as φ.

The rule-based clustering on features involved in FPP and FAP methods
can be thought of as using one specific, hand-tuned mapping function φ. In
contrast, the PPF method learns such a map φ from data, eliminating the need
to manually define accurate and reliable feature buckets.

5.2 Evaluation of Clustering Methods

We use a historical dataset, Dtrain from ARMMAN consisting of 4238 beneficia-
ries in total, who enrolled into the program between May-July 2020. We compare
the clustering methods empirically, based on the criteria described below.

1. Representation: Cluster centers that are representative of the underlying
data distribution better resemble the ground truth transition probabilities. This
is of prime importance to the planner, who must rely on these values to plan
actions. Fig 3 plots the ground truth transition probabilities and the resulting
cluster centers determined using the proposed methods. Visual inspection reveals
that the PPF method represents the ground truth well, as is corroborated by the
quantitative metrics of Table 1 that compares the RMSE error across different
clustering methods.

2. Balanced cluster sizes: A low imbalance across cluster sizes is desirable
to preclude the possibility of arriving at few, gigantic clusters which will assign
identical whittle indices to a large groups of beneficiaries. Working with smaller
clusters also aggravates the missing data problem in estimation of active transi-
tion probabilities. Considering the variance in cluster sizes and RMSE error for
the different clustering methods with k = {20, 40} as shown in Table 1, PPF
outperforms the other clustering methods and was chosen for the pilot study.

Table 1: Average RMSE and cluster size variance over all beneficiaries for differ-
ent methods. Total Beneficiaries = 4238, µ20 = 211.9, µ40 = 105.95 (µ = average
beneficiaries per cluster)

Clustering
Method

Average RMSE Standard Deviation
k = 20 k = 40 k = 20 k = 40

FO 0.229 0.228 143.30 74.22
FPP 0.223 0.222 596.19 295.01
FAP 0.224 0.223 318.46 218.37
PPF 0.041 0.027 145.59 77.50
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(a) FO clustering (b) FPP clustering

(c) FAP clustering (d) PPF clustering

Fig. 3: Comparison of passive transition probabilities obtained from different
clustering methods with cluster sizes k = {20, 40} with the ground truth tran-
sition probabilities. Blue dots represent the true passive transition probabilities
for every beneficiary while red or green dots represent estimated cluster centres.

Next we turn to choosing k, the number of clusters: as k grows, the clusters
become sparse in number of active samples aggravating the missing data problem
while a smaller k suffers from a higher RMSE. We found k = 40 to be optimal
and chose it for the pilot study .

Finally, we adopt the Whittle solution approach for RMABs to plan actions
and pre-compute all of the possible 2 ∗ k index values that beneficiaries can take
(corresponding to combinations of k possible clusters and 2 states). The indices
can then be looked up at all future time steps in constant time, making this an
optimal solution for large scale deployment with limited compute resources.

As we got this RMAB system ready for real-world use, there was an impor-
tant observation for social impact settings: real-world use also required us to
carefully handle several domain specific challenges, which were time consuming.
For example, despite careful clustering, a few clusters may still be missing ac-
tive probability values, which required employing a data imputation heuristic .
Moreover, there were other constraints specific to ARMMAN, such as a benefi-
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ciary should receive only one service call every η weeks, which was addressed by
introducing “sleeping states” for beneficiaries who receive a service call .

6 Resource Requirements

6.1 Data Collected by ARMMAN

Beneficiaries enroll into ARMMAN’s information program with the help of health
workers, who collect the beneficiary’s demographic data such as age, education
level, income bracket, phone owner in the family, gestation age, number of chil-
dren, preferred language and preferred slots for the automated voice messages
during enrolment. These features are referred to as Beneficiary Registration Fea-
tures in rest of the chapter. Beneficiaries provided both written and digital con-
sent for receiving automated voice messages and service calls. ARMMAN also
stores listenership information regarding the automated voice messages together
with the registration data in an anonymized fashion.

7 Field Evaluation

In this section, we discuss a real-world quality improvement study. We also sim-
ulate the expected outcome in other synthetically constructed situations and
demonstrate good performance of our approach across the board.

7.1 Service Quality Improvement Study

Setup This cohort of beneficiaries registered in the program between Feb 16,
2021 and March 15, 2021 as Dtest and started receiving automated voice mes-
sages few days post enrolment as per their gestational age. Additionally, as per
the current standard of care, any of these beneficiaries could initiate a service
call by placing a “missed call”. The 23003 beneficiaries are randomly distributed
across 3 groups, each group adding to the CSOC as follows:

– Current-Standard-of-Care (CSOC) Group: The beneficiaries in this
group follow the original standard of care, where there are no ARMMAN
initiated service calls. The listenership behavior of beneficiaries in this group
is used as a benchmark for the RR and RMAB groups.

– RMAB group: In this group, beneficiaries are selected for ARMMAN-
initiated service call per week via the Whittle Index policy described in
Section 4. Even though all beneficiaries within a cluster are modeled by
identical MDP parameters, their states may evolve independently, and so
the Whittle indices are tracked for each beneficiary separately, leading to an
RMAB with 7668 arms.

– Round Robin (RR) group: By default, NGOs including ARMMAN often
conduct service calls using some systematic set order – the idea here is to
have an easily executable policy, that services enough of a cross-section of
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Table 2: Beneficiary distribution in the three groups and their start states during
week 0 of the study.

Group Engaging (E) Non-Engaging (NE) Total
RMAB 3571 4097 7668
RR 3647 4021 7668

CSOC 3661 4006 7667

beneficiaries and can be scaled up or down per week based on available
resources. To recreate this setting, we generate service calls to beneficiaries
based on the ascending order of their date of enrollment for this RR group,
as recommended by ARMMAN. If this method succeeds compared to CSOC,
then a simple manual strategy is enough; RMAB style optimization may not
be needed.

Table 2 shows the absolute number of beneficiaries in states E or NE, where
the state is computed using one week of engagement data between April 19 -
April 26, 2021.

Beneficiaries across all three groups receive the same automated voice mes-
sages regarding pregnancy and post-birth care throughout the program, and no
health related information is withheld from any beneficiary. The study only aims
to evaluate the effectiveness of ARMMAN-initiated outbound service calls with
respect to improving engagement with the program across the three groups. No
interviews or research data or feedback was collected from the beneficiaries.

The study started on April 26, 2021, with m beneficiaries selected from the
RMAB and RR group each (m� N) per week for ARMMAN-initiated service
calls. ARMMAN staff performing service calls were blind to the experimental
groups that the beneficiaries belonged to. Recall, the goal of the service calls
is to encourage the beneficiaries to engage with the health information message
program in the future. For this study, number of service calls m was on average
225 per week for each of RMAB and RR groups to reflect real-world constraints
on service calls. The study was scheduled for a total of 7 weeks, during which
20% of the RMAB (and RR) group had received a service call, which is closer to
the percentage of population that may be reached in service calls by ARMMAN.
4

Results We present our key results from the study in Figure 4. The results are
computed at the end of 7 weeks from the start of the quality improvement study
on April 26, 2021.

Figure 4 measures the impact of service calls by the RMAB and RR policies
in comparison to the CSOC Group. Beneficiaries’ engagement with the program
typically starts to dwindle with time.
4 Each beneficiary group also received very similar beneficiary-initiated calls, but these
were less than 10% of the ARMMAN-initiated calls in RMAB or RR groups over 7
weeks.
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Fig. 4: Cumulative number of weekly engagement drops prevented (in comparison
to the CSOC group) by RMAB far exceed those prevented by RR.

In Figure 4, we measure the impact of a service call policy as the cumulative
drop in engagement prevented compared to the CSOC Group. We consider drop
in engagement instead of the raw engagement numbers themselves, because of
the slight difference in the numbers of beneficiaries in engaging (E) state at the
start of the study. The drop in engagement under a policy π at time t can be
measured as the change in engagement:

∆π
current(t) :=

∑
n∈N

(Rn(s0)−Rn(st)) (2)

where Rn(st) represents the reward for nth beneficiary in state st at time step t
and cumulative drop in engagement is:

∆π
cumulative(t) :=

∑
n∈N

ζ=t∑
ζ=0

(Rn(s0)−Rn(sζ)) (3)

The cumulative drop in engagement prevented by a policy π, in comparison to
the CSOC Group is thus simply:

∆π
cumulative(t)−∆CSOC

cumulative(t) (4)

and is plotted on the y-axis of Figure 4.
Figure 4 shows that the RMAB policy prevents a total 622 instances of a drop

in automated health message engagement, at the end of 7 weeks, as compared
to CSOC. RR group, on the other hand, only prevents 101 engagement drops
by the end of week 7. Given that there are a total of 1944 engagement drops in
the CSOC group, we show in the first row of Table 3, that the RMAB group has
32.0% and 28.3% less cumulative engagement drops as compared to the CSOC
and RR groups respectively by the end of the study.
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Table 3: Statistical significance for service call policy impact at week 7 is tested
using a linear regression model. We use: ∗p < 0.05; †p < 0.1

RMAB vs
CSOC

RR vs
CSOC

RMAB vs
RR

% reduction in cumulative en-
gagement drops 32.0% 5.2% 28.3%

p-value 0.044∗ 0.740 0.098†

Coefficient β -0.0819 -0.0137 -0.0068

Statistical Analysis To investigate the benefit from use of RMAB policy over
policies in the RR and CSOC groups, we use regression analysis [1]. Specifically,
we fit a linear regression model to predict number of cumulative engagement
drops at week 7 while controlling for treatment assignment and covariates spec-
ified by beneficiary registration features. The model is given by:

Yi = k + βTi +

J∑
j=1

γjxij + εi

where for the ith beneficiary, Yi is the outcome variable defined as number of cu-
mulative engagement drops at week 7, k is the constant term, β is the treatment
effect, Ti is the treatment indicator variable, xi is a vector of length J repre-
senting the ith beneficiary’s registration features, γj represents the impact of the
jth feature on the outcome variable and εi is the error term. For evaluating the
effect of RMAB service calls as compared to CSOC group, we fit the regression
model only for the subset of beneficiaries assigned to either of these two groups.
Ti is set to 1 for beneficiaries belonging to the RMAB group and 0 for those in
CSOC group. We repeat the same experiment to compare RR vs CSOC group
and RMAB vs RR group.

The results are summarized in Table 3. We find that RMAB has a statistically
significant treatment effect in reducing cumulative engagement drop (negative
β, p < 0.05) as compared to CSOC group. However, the treatment effect is not
statistically significant when comparing RR with CSOC group (p = 0.740). Ad-
ditionally, comparing RMAB group with RR, we find β, the RMAB treatment
effect, to be significant (p < 0.1). This shows that RMAB policy has a statisti-
cally significant effect on reducing cumulative engagement drop as compared to
both the RR policy and CSOC. RR fails to achieve statistical significance against
CSOC. Together these results illustrate the importance of RMAB’s optimization
of service calls, and that without such optimization, service calls may not yield
any benefits.

RMAB Strategies We analyse RMAB’s strategic selection of beneficiaries in
comparison to RR using Figure 5, where we group beneficiaries according to
their whittle indices, equivalently their 〈cluster, state〉. Figure 5 plots the fre-
quency distribution of beneficiaries (shown via corresponding clusters) who were
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(a) Week 1 Service Calls (b) Week 2 Service Calls

Fig. 5: Distributions of clusters picked for service calls by RMAB and RR are
significantly different. RMAB is very strategic in picking only a few clusters with
a promising probability of success, RR displays no such selection.

selected by RMAB and RR in the first two weeks. For example, the top plot in
Figure 5a shows that RMAB selected 60 beneficiaries from cluster 29 (NE state).
First, we observe that RMAB was clearly more selective, choosing beneficiaries
from just four (Figure 5a) or seven (Figure 5b) clusters, rather than RR that
chose from 20. Further, we assign each cluster a hue based on their probability
of transitioning to engaging state from their current state given a service call.
Figure 5 reveals that RMAB consistently prioritizes clusters with high proba-
bility of success (blue hues) while RR deploys no such selection; its distribution
emulates the overall distribution of beneficiaries across clusters (mixed blue and
red hues).

Furthermore, Figure 6a further highlights the situation in week 1, where
RMAB spent 100% of its service calls on beneficiaries in the non-engaging state
while RR spent the same on only 64%. Figure 6b shows that RMAB converts
31.2% of the beneficiaries shown in Figure 6a from non-engaging to engaging
state by week 7, while RR does so for only 13.7%. This further illustrates the
need for optimizing service calls for them to be effective, as done by RMAB.

7.2 Synthetic Results

We run additional simulations to test other service call policies beyond those
included in the quality improvement study and confirm the superior performance
of RMAB. Specifically, we compare to the following baselines: (1) Random is a
naive baseline that selects m arms at random. (2) Myopic is a greedy algorithm
that pulls arms optimizing for the reward in the immediate next time step.
Whittle is our algorithm.

We compute a normalized reward of an algorithm ALG as: 100×(RALG−RCSOC
)

R
WHITTLE−RCSOC

where R is the total discounted reward. Simulation results are averaged over
30 independent trials and run over 40 weeks.
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(a) (b)

Fig. 6: (a) % of week 1 service calls on non-engaging beneficiaries (b) % of non-
engaging beneficiaries of week 1 receiving service calls that converted to engaging
by week 7

Fig. 7: Performance of myopic can be arbitrarily bad and even worse than Ran-
dom, unlike the Whittle policy.

Figure 7 presents simulation of an adversarial example [25] consisting of x%
of non-recoverable and 100−x% of self-correcting beneficiaries for different values
of x. Self-correcting beneficiaries tend to miss automated voice messages sporadi-
cally, but revert to engaging ways without needing a service call. Non-recoverable
beneficiaries are those who may drop out for good, if they stop engaging. We
find that in such situations, MYOPIC proves brittle, as it performs even worse
than RANDOM while WHITTLE performs well consistently. The actual qual-
ity improvement study cohort consists of 48.12% non-recoverable beneficiaries
(defined by P p01 < 0.2) and the remaining comprised of self-correcting and other
types of beneficiaries.

8 Lessons Learned

The widespread use of cell-phones, particularly in the global south, has enabled
non-profits to launch massive programs delivering key health messages to a broad
population of beneficiaries in a cost-effective manner. We present an RMAB
based system to assist these non-profits in optimizing their limited service re-
sources. To the best of our knowledge, ours is the first study to demonstrate the
effectiveness of such RMAB-based resource optimization in real-world public
health contexts. These encouraging results have initiated the transition of our
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RMAB software to ARMMAN for real-world deployment. We hope this work
paves the way for use of RMABs in many other health service applications.

Some key lessons learned from this research, which complement some of the
lessons outlined in [10, 37, 41] include the following. First, social-impact driven
engagement and design iterations with the NGOs on the ground is crucial to
understanding the right AI model for use and appropriate research challenges.
As discussed in footnote 1, our initial effort used a one-shot prediction model,
and only after some design iterations we arrived at the current RMAB model.
Next, given the missing parameters in RMAB, we found that the assumptions
made in literature for learning such paramters did not apply in our domain,
exposing new research challenges in RMABs. In short, domain partnerships with
NGOs to achieve real social impact automatically revealed requirements for use
of novel application of an AI model (RMAB) and new research problems in this
model.

Second, data and compute limitations of non-profits are a real-world con-
straint, and must be seen as genuine research challenges in AI for social impact,
rather than limitations. In our domain, one key technical contribution in our
RMAB system is deploying clustering methods on offline historical data to in-
fer unknown RMAB parameters. Data is limited as not enough samples are
available for any given beneficiary, who may stay in the program for a limited
time. Non-profit partners also cannot bear the burden of massive compute re-
quirements. Our clustering approach allows efficient offline mapping to Whittle
indices, addressing both data and compute limits, enabling scale-up to service
10s if not 100s of thousands of beneficiaries. Third, in deploying AI systems for
social impact, there are many technical challenges that may not need innovative
solutions, but they are critical to deploying solutions at scale. Indeed, deploying
any system in the real world is challenging, but even more so in domains where
NGOs may be interacting with low-resource communities. We hope this work
serves as a useful example of deploying an AI based system for social impact in
partnership with non-profits in the real world and will pave the way for more
such solutions with real-world impact.

Finally, there are also some important topics for future work in improving the
RMAB system, which include handling fairness [26], changing the current RMAB
model with two actions to incorporate multiple actions [18], and improving the
RMAB model from interactions with beneficiaries [5].
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