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Abstract. Biodiversity data is being collected at unprecedented scales,
and is no longer able to be efficiently and sustainably processed with
human effort alone. Camera traps, motion-activated static cameras used
for long-term studies of ecosystems and the wildlife within them, are
a prime example of this, collecting hundred of thousands of images per
year for each survey. The camera trap community has increasingly turned
to computer vision to aide in processing, but the challenges of domain
generalization in CV led to the need for in-house ML engineers in order
to train usable, reliable model for each project. This doesn’t scale, so we
performed a systematic analysis of generalization and sought to deploy
a model that would serve the needs of diverse organizations worldwide
by increasing human efficiency collaboratively with AI, as opposed to
fully automating camera trap data processing. The focus on off-the-shelf
generalizability and accessibility led to a a model that has been widely
adopted, and is used by over 60 organization and NGOs globally. In this
chapter, we discuss the development of the MegaDetector and introduce
five diverse end users with different needs and target uses and discuss
what made the MegaDetector accessible to them and how it has impacted
their conservation and biodiversity work.

Keywords: Computer Vision · Camera Trapping · Biodiversity Moni-
toring · Data Science · ML Deployment.

1 Introduction

As the planet changes due to urbanization and climate change, biodiversity
worldwide is in decline. We are currently witnessing an estimated rate of species
loss that is up to 200 times greater than historical rates [12]. Monitoring biodi-
versity quantitatively can help us understand the connections between species
decline and pollution, exploitation, urbanization, global warming, and conserva-
tion policy [10, 11].

⋆ Supported by Microsoft AI for Earth and the Caltech Resnick Sustainability Insti-
tute.
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Fig. 1. Examples of camera trap images from three different locations in the
Southwest United States. Each row is a different location and a different camera
type. The first two cameras use IR, while the third row used white flash. The first
two columns are images of bobcats, the next two columns are coyotes. This figure was
originally published in [7] and is reproduced with permission.

We collaborate with researchers who study the effect of these factors on wild
animal populations by monitoring changes in species diversity, population den-
sity, and behavioral patterns. In the past, much of this research was done via
field studies, where biologists and zoologists would study animals in the wild
by direct observation. However, once cameras became relatively inexpensive and
easy to use, many scientists turned to motion-activated camera traps as an effi-
cient, cost-effective, non-invasive method to collect experimental data. Networks
of these static passive monitoring cameras are used to monitor changes in bio-
diversity, detect endangered and threatened species, build species distribution
models, and estimate animal population sizes.

These cameras collect vast amounts of data, a single network of cameras can
sometimes collect upwards of a million images per year. Manual processing of
these images is a significant bottleneck to ecological monitoring and understand-
ing in a reasonable timeframe. Our model, the MegaDetector, provides robust
and geographically and taxonomically generalizeable animal, human, and vehi-
cle detection in camera trap data. The model is widely adopted by the camera
trap community, with use by over 60 different organizations and research groups
worldwide, and has been found by organizations to drastically reduce their data
processing time and costs, sometimes by up to 90%.

For this case study, we interviewed MegaDetector users from five different
global organizations:



The MegaDetector 3

– Dylan Bergman, Point no Point Treaty Council, USA
– Tavis Forrester, Oregon Fish and Wildlife, USA
– Itai Namir and Ron Chen, Hamaarag, Israel
– Ben Pitcher, Brendan Altig, and Neil Jordan, University of New South

Wales, Australia
– Damien Kerr and Ivory Lu, Australian Wildlife Council, Australia

Each organization reflected on their ecological use case for camera trap moni-
toring, how they got started using the MegaDetector, their current data process-
ing workflow, and the impact the MegaDetector has had on their conservation
efforts.

2 Problem Statement

Camera traps are one of the most widely used ecological monitoring sensors,
with an At present, most camera trap images collected globally are annotated
by hand, and the time required to sort images severely limits data scale and
research productivity. Our collaborators estimate that they can annotate around
3 images/minute, and spend up to 500 hours per project on data annotation.
Annotation of camera trap photos is not only time consuming, but it is also
challenging. Because the images are taken automatically based on a triggered
sensor, there is no guarantee that the animal will be centered, focused, well-lit, or
an appropriate scale (they can be either very close or very far from the camera,
each causing its own problems, see Figure 2 for more details) [25]. Further, up to
90% of the photos at any given location are triggered by something other than
an animal, such as wind in the trees, a passing car, or a hiker.

Ideally, all camera trap data processing could happen automatically, includ-
ing filtering out empty images, categorizing animals to species, counting individ-
ual animals across detection events, recognizing animal behaviors across taxa,
detecting the spread of disease, etc. The computer vision community has tackled
many of these challenges in the academic literature and shown highly promising
results, with reported accuracy matching or surpassing human experts [24, 33,
31, 13, 19, 26, 34, 35, 20, 15, 32, 29, 22]. However, with some exceptions [30, 27, 21],
many of the previous studies of automated data processing have used the same
camera locations for both training and testing the performance of an automated
system, thus failing to evaluate the ability of machine learning and computer vi-
sion models for camera trap data to generalize to new environments, new camera
deployments, new sensor types, and new projects. This generalization to “out of
distribution” (OOD) settings not seen during training is a known challenge for
computer vision and machine learning (see Figure 3). In practice, we have found
that most of these models have significantly overfit to their training datasets and
that generalization performance is shockingly poor due to shifts in both visual
and supopulation distributions between regions [7, 18, 25], compounded by data
quality issues, challenges recognizing rare species with few training examples [28,
5], and the need to handle novel species never seen during training [25]. This
leads to a lack of useability of models by new organizations without the need
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(1) Illumination (2) Blur (3) ROI Size

(4) Occlusion (5) Camouflage (6) Perspective

Fig. 2. Common data challenges: (1) Illumination: Animals are not always salient.
(2) Motion blur: common with poor illumination at night. (3) Size of the region
of interest (ROI): Animals can be small or far from the camera. (4) Occlusion: e.g.
by bushes or rocks. (5) Camouflage: decreases saliency in animals’ natural habitat.
(6) Perspective: Animals can be close to the camera, resulting in partial views of the
body. This figure was originally published in [7] and is reproduced with permission.
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(A) Cow: 0.99, Pasture:

0.99, Grass: 0.99, No Person:

0.98, Mammal: 0.98

(B) No Person: 0.99, Water:

0.98, Beach: 0.97, Outdoors:

0.97, Seashore: 0.97

(C) No Person: 0.97,

Mammal: 0.96, Water: 0.94,

Beach: 0.94, Two: 0.94

Fig. 3. Recognition algorithms generalize poorly to new environments. Cows
in ‘common’ contexts (e.g. Alpine pastures) are detected and classified correctly (A),
while cows in uncommon contexts (beach, waves and boat) are not detected (B) or
classified poorly (C). Top five labels and confidence produced by ClarifAI.com shown.
This figure was originally published in [7] and is reproduced with permission.

for custom model training, limiting the potential for scalable impact of many
published computer vision models for camera trap data. In order to deploy au-
tomated, AI-based solutions that can be used across organizations, we need to
build open source models that are generalizeable as well as provide accessible
infrastructure to enable the use of those models easily without a background in
data science or computer vision.

3 Method

Camera traps perfectly represent the challenge of domain generalization for com-
puter vision [7]. Most benchmark datasets in machine learning and computer
vision are what are considered ”in domain” - the training and test data is drawn
from the same underlying distribution, and thus the assumption that the test
data will be independently and identically distributed (IID) to the training data
is a valid one. This assumption form the basis of much machine learning the-
ory. However, the real world is seldom IID. If we consider specifically species
identification from images, there is spatiotemporal structure to the underlying
distribution of species which causes subpopulation shifts in the likelihood of see-
ing one or another species based on where the data was collected. Further, in
the case of static passive monitoring sensors such as camera traps, there is ad-
ditional correlation between the individual sensor location and what species are
captured based on the behavior of individual nearby animals and their territo-
ries and habits, as well as visual correlations based on the type and placement
of the sensor and the static background and microhabitat. All of these factors
cause a notable drop in performance of state-of-the-art computer vision mod-
els when evaluated on sensor locations not seen during training, even if those
sensors are located in regions that have been represented in the training set.
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[8] formulated a systematic evaluation protocol and benchmark dataset, Caltech
Camera Traps, to measure this ”generalization gap” in performance, based on
evaluating models on both seen (cis) and unseen (trans) locations and comparing
the results. As can be seen in Figure 4, there is a significant dropoff in perfor-
mance on held-out camera locations, even when classifiying across sequences of
frames taken in rapid succession, or classifying on close-cropped images of the
animals in question as opposed to the entire image frame. This implies that
building species classification models that will work off-the-shelf for new camera
trap practitioners requires significantly more training data than building species
classification models for a specific, fixed deployment, and that in-house training
of custom species classification models for specific projects and deployments is
still necessary, which is inaccessible for many ecologists working at NGOs or
governmental agencies.
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Fig. 4. Classification error vs. number of class-specific training examples.
Error is calculated as 1 - AUC (area under the precision-recall curve). Best-fit lines
through the error-vs-n.examples points for each class in each scenario (points omitted
for clarity), with average r2 = 0.261. As expected, error decreases as a function of
the number of training examples. This is true both for image classification (blue) and
bounding-box classification (red) on both cis-locations and trans-locations. However,
trans-locations show significantly higher error rates. To operate at an error rate of
5.33% on bounding boxes or 18% on images at the cis-locations we need 500 training
examples, while we need 10,000 training examples to achieve the same error rate at the
trans-locations, a 20x increase in data. This figure was originally published in [7] and
is reproduced with permission.

However, the silver lining that was discovered in [7] is that while species
categorization still struggles to generalize, that class-agnostic animal detection
in fact generalizes quite well. Figure 5 shows the surprising lack of generaliza-
tion gap for two different object detection architectures trained on the CCT-20
benchmark. This is promising, as robust and generalizeable animal detection has
the capacity to significantly reduce human effort in processing camera trap data
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by reliably filtering out empty images which can be 70-90% if the data collected
at any given sensor. Though not able to fully automate camera trap data pro-
cessing, we could see the potential for impact as a generalizeable model would
not need to be re-trained by an expert for every project. Thus the MegaDetector
project [6] was born.
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Fig. 5. Faster-RCNN precision-recall curves at an IoU of 0.5, by frame and by sequence,
using a confidence-based approach to determine which frame should represent the se-
quence. This figure was originally published in [7] and is reproduced with permission.

The first step in MegaDetector development was the curation of a more
diverse training and evaluation dataset, with examples of camera trap data
far beyond the American Southwest (the location of Caltech Camera Traps).
Partnering with multiple institutions, including the Snapshot Safari project, the
Wildlife Conservation Society, the Nature Conservancy, the Idaho Department
of Fish and Game, and others, data was curated and labeled for detector train-
ing with bounding boxes around each animal. When possible, the curated data
from each organization, along with the bounding box labels, was published on
LILA.science, an open repository for machine learning training datasets for bio-
diversity, ecology, and conservation applications. An evaluation dataset made
up of held-out camera locations from each region was carefully constructed to
ensure the generalization seen on CCT would hold, even for regions and species
not seen during training.

The first MegaDetector model was trained in the summer of 2018 and both
model and code was open-sourced in the Microsoft Camera Traps Github repos-
itory. That first model included only ”animal” detection, and was trained to
ignore humans and vehicles as background classes. Based on community interest
and after careful evaluation of generalization, subsequent models added a ”hu-
man” and a ”vehicle” class. The categories supported in MegaDetector v2-v5 can
be tracked in Figure 6. All versions of the MegaDetector before v5 were based
on the Tensorflow Object Detection API [17] implementation of Faster R-CNN
with an Inception backbone, while v5 switched to a Pytorch implementation of
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YoloV5 for both easier training and evaluation, since Pytorch is a more acces-
sible ML language, and more efficient inference with a 5x speedup in inference
time from MDv4.

V1 & V2

V3

V4 & V5 

Fig. 6. MegaDetector has expanded its coverage over time, with 5 versions released so
far.

Beyond just open-sourcing the training code and model versions, consider-
able effort was put into accessibility of use and community engagement. In order
to support community users and stakeholders at different levels of python and
machine learning literacy, individual image and batch APIs on Azure were also
provided free of charge by Microsoft from 2019-2021, with all API code open
sourced. We also worked with the developers of popular camera trap data man-
agement tools such as TimeLapse [2] and Camelot [1] to provide MegaDetector
interactability within those tools, such as the ability to import MegaDetector
results for easy visualization and correction in TimeLapse [16]. These efforts,
along with the off-the-shelf usefulness of the model, led to large-scale adoption
with over 60 NGOs, governmental agencies, and research groups using the model
globally. Two end use cases are shown in Figure 7, emphasizing the breadth of
end-use applications of the model. MegaDetector has also been a key aspect of
numerous academic publications in computer vision [23, 4, 9] and ecology [14,
21], as well as incorporated into several open-source tools and GUIs for camera
trap data processing such as TrapTagger [3].
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Fig. 7. The MegaDetector has been used to process data for over 60 NGOs, govern-
mental agencies, and research groups worldwide, and was used to process over 100
million images in 2021 alone.

4 Risk Mitigation

MegaDetector is used by organizations to process data used to set wildlife man-
agement policy, stop the spread of invasive predators that are devastating to
local wildlife, and make decisions on how to allocated limited resources for con-
servation. Systematic biases in the model learned from the training data, which
are an inherent challenge for all current machine learning and computer vision
systems, carry risk in this real-world scenario where model results are integral to
decision-making. In order to mitigate these risks, the MegaDetector team works
with organizations to determine whether MegaDetector is sufficiently accurate
for their use case, and to set operating points for model confidence based on the
risks of false positives vs false negatives for their specific use case. For example,
when detecting invasive rodents on islands, which is how Island Conservation
uses MegaDetector, a missed image of a rodent (a false negative) can have dis-
astrous consequences for local nesting bird populations, so they use a lower
detection confidence threshold and manually filter more images. In contrast, for
the Idaho Department of Fish and Game, which run a network of over 2000
camera traps run on a timelapse setting across Idaho and collect tens of millions
of images per year, mostly of elk and deer, a few missed elk is not a significant
concern vs. the increased manual processing effort needed to filter through false
positives when running the model at a lower confidence threshold. Our team
works with different stakeholders to help them determine the optimal tradeoff
between resources and risk for their use case. This is done primarily qualita-
tively, though if the organization has previously labeled data we can calculate
quantitative metrics such as precision-recall curves. Without previously-labeled
data, we sample a set of data from the organization, usually 10K images, and
generate a simple html page that visualizes detections at different operating
points on different pages. This way an ecologist can scroll through examples of
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that tradeoff between false positives and false negatives and build up an intu-
itive sense of model performance for their specific cameras and their specific use
case before determining how to use the model. We have found that this initial
communication of risk and model performance specific to an individual organi-
zation is key to the safe adoption of the model. In some cases, MegaDetector has
been determined to be insufficient for a given use. For example, MegaDetector
v4 struggled to correctly detect animals at camera traps that use bait stations to
attract wildlife, as the animals were often at strange, out-of-distribution angles
to the camera and the bait trap itself could result in high rates of false posi-
tives. We added a large amount of labeled data from bait traps to MegaDetector
v5 training, which mitigated the issue. We also have a separate postprocessing
script that can be run per-camera to detect possible repeated, static false posi-
tives caused by objects such as bait traps based on box position over time, which
can then be easily visualized by an ecologist and removed en masse if found to
be in error. We also encourage users to continue to monitor performance of the
models over time with periodic quality control checks and to revisit the optimal
operating point for their use, to ensure that model performance isn’t drifting.

5 Resource Requirements

Many of the datasets used to train the MegaDetector, along with the bounding
boxes collected for MegaDetector training, are publicly available at LILA.science.
There are a few additional training datasets that were provided by organiza-
tions that were not able to share their data publicly, and because of ethical
issues around lack of consent, all images found to contain humans are removed
from datasets before publication on LILA. As a result, MegaDetector perfor-
mance unfortunately cannot be replicated based on public data alone. All model
versions were trained on Azure cloud GPUs based on open-source object detec-
tion repositories (Tensorflow Object Detection API for v1-4, Detectron for v5),
with camera-trap-specific data preprocessing that is open-sourced along with
all other training, evaluation, inference, and data management code on the Mi-
crosoft/CameraTraps github repository. Prior to 2022, Microsoft AI for Earth
provided free MegaDetector inference via an Azure batch API. Though all the
code to launch that API is open source, meaning that organizations can run
their own instance of the API easily on Azure, Microsoft no longer financially
supports the public use of the model. The MegaDetector team has launched a
small nonprofit that processes data free of charge through the MegaDetector for
smaller-scale organizations, but is unable to support significantly large-scale use
on their GPU cluster. The need to pay for cloud GPU usage has proven to be
cost-prohibitive for some larger organizations, and has resulted in a transition
to the purchase of in-house GPUs and local processing to remove the need for
reliance on industry to maintain sustainable and needed access to AI for their
conservation applications. MegaDetector v5 was released specifically to reduce
the computational overhead, and thus time and money, needed to run MegaDe-
tector, as we found that YOLOv5 was able to replicate performance of the larger
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Inception-backbone Faster R-CNN model trained in previous versions. We hope
this lighter-weight model will increase the accessibility of MegaDetector by re-
ducing computational and cost overheads of cloud-based use.

6 Field Evaluation

In this section we will highlight 5 different end users of MegaDetector, how they
use the model, and the impact it has had on their organization. We conducted
informational interviews with members of each organization, and found several
main themes. First, though the models are intended to be as accessible as pos-
sible, most organizations worked directly with MegaDetector team members to
get started using the model. Second, organizations with in-house data scientists
have an advantage, as they are able to set up scalable data pipelines and increase
the turnaround time for individual scientists within the organization. Third, that
all users found that the MegaDetector was a game changer for their conserva-
tion efforts, not only enabling them to analyze data much more efficiently but
also changing the way they thought about monitoring and what was possible.
Fourth, that working with the MegaDetector gave each organization a much
more nuanced understanding of machine learning as a conservation technology
tool.

6.1 Point no Point Treaty Council

Dylan Bergman is a wildlife biologist with the Point no Point Treaty Council in
Washington State, USA. The Council is a natural resource consortium that works
for two Western Washington tribes, the Port Gamble and Jamestown S’Klallam
Tribes, that are natural resource co-managers in Washington State. The tribes
set their own hunting seasons and are legally empowered by the Point No Pont
Treaty to help with Washington State resource management decisions. The tribes
employ their own in-house wildlife biologists to help set wildlife policy, which
enables wildlife conservation research and data-informed wildlife management for
both the tribes and state agencies. Dylan primarily focuses on wildlife population
estimation for deer, elk, and predator species such as bobcats, and sets the tribal
hunting seasons for deer and elk. He has several camera trap grids that collect a
timelapse photo every five minutes, on the order of a million images per season,
and has been a MegaDetector user since 2019. He uses the model to filter out
empty images and localize animals, which he then categorizes manually and uses
to build space-to-event and time-to-event population models for deer, elk, bear,
coyotes, bobcats, and mountain lions. His use of AI is heavily supported by the
MegaDetector team, he uploads images to Azure to be processed via the batch
API and then does verification and categorization through TimeLapse, and he
can process up to 10K images a day by himself with the model in the loop.
He estimates MegaDetector has contributed least a 50% speedup in his data
processing workflow, and has enabled him to significantly expand his camera
trap monitoring efforts without needing additional manpower for processing.
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6.2 Oregon Department of Fish and Wildlife

Tavis Forrester is one of 8 wildlife biologists embedded in research units at the
Oregon Department of Fish and Wildlife (ODFW). His research unit is housed
in a Forest Service Pacific Northwest research lab, and their research is primarily
wildlife management driven with a focus on predator/prey interactions and their
ecosystem effects. They manage community science run camera grids across 6
states, as well as 200 in-house-managed cameras that collect around 1.5 million
images a year. This 200-camera grid is being used to study cattle, deer, and
elk species interaction inside an outside a fenced experimental range. They also
have several GPS-collared animals, and analyze habitat use from both collars
and cameras. ODFW got started with MegaDetector in 2020 after seeing the
impact of its successful adoption of a MegaDetector/Timelapse workflow by the
Idaho Department of Fish and Game. They adopted the same workflow, based
on MegaDetector pre-processing to filter empty images and localize animals and
quality control+species identification in TimeLapse, and have seen it reduce
their camera trap data processing time by 2/3. They had a 4 year backlog when
they started using MegaDetector, and now they have only a 1 year backlog and
plan to be caught up before the data comes off the cameras this year, in 2022.
Before working with MegaDetector they found that with the resources they had
available it was impossible to process their data in a meaningful timeframe, so
the impact has been invaluable in their ability to effectively manage wildlife pop-
ulations. Similar to Point no Point Treaty Council, their use is supported by the
MegaDetector team through Azure data upload and use of the batch processing
API. Their use of MegaDetector has been informative of the significant value of
AI in a human/AI interaction context, as opposed to the often-touted “AI do
it for me” scenario that is seen hyped in the literature but rarely translates to
practice. Tavis sees more and more value in systems that “handle the easy stuff
and make humans more efficient”, and has noted that people get really upset if
the AI makes a single mistake, wheras before they were used to many mistakes
coming from the inexpert data labelers they were forced to use due to lack of
time and resources. One of the most aspects of incorporating MegaDetector is
that ODFW can now label data efficiently enough that expert biologists can
do the labeling, which significantly reduces human error in species identification
previously coming from inexperienced undergraduates and technicians.

6.3 HaMARAAG

Itai Namir and Ron Chen work for HaMARAAG, a web of different ecologi-
cal research groups in Israel established in the mid-2000s. They run a national
wildlife monitoring program that started in 2013, motivated by a need to provide
scientific information to decision-makers about natural ecosystems. They’re now
monitoring 9 ecosystems in Israel, with their main focus on a set of bioindicator
taxa: birds, reptiles, plants, medium to large mammals, and arthropods. HaMA-
RAAG also works with the Israeli Nature and Parks Authority to assess natural
hazards such as oil spills and chemical spills, the Ministry of Agriculature, and
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many others. They are in the process of stablishing a complementary community
science center to curate existing data and target the collection of new data, and
are building a community science platform on top of Living Atlas. MegaDetec-
tor was recommended to them through eMammal, a Smithsonian community-
science-driven camera trapping project, and they have processed over 1.2 million
images with MegaDetector so far. They started with a workflow that was highly
dependent on the MegaDetector team, uploading large batches of data to the
cloud as they were collected from the field and processing via the batch API.
They are currently in the development of their own in-house data processing
workflow, and are purchasing GPUs to enable them to run the MegaDetector
and perhaps also their own self-trained classification models going forward with-
out relying on corporate cloud credits, which they hope will provide long-term
sustainability for their ecological monitoring efforts. They find MegaDetector
saves them a significant amount of time and therefore money, particularly fil-
tering empty images. They also appreciate the reproducibility of an AI-based
workflow as opposed to human labeling, though they have had concerns around
the reproducibility and consistency of MD results as versions change over time
which they have devoted resources to evaluate.

6.4 Australian Dingo Project

Ben Pitcher and Neil Jordan work with the Australian Dingo Project (ADP), and
are affiliated with McMasters University and the University of New South Wales,
respectively. The ADP is an offshoot of the Taronga Conservation Society, a gov-
ernmental agency modeled after the Wildlife Conservation Society, that runs two
public zoos about 600km apart. These zoos are the hands-on animal conserva-
tion arm of the Australian government, meaning they are responsible for wildlife
management programs such as breed-for-release, and they have a small research
organization which collaborates with academic partners. ADP runs several con-
servation projects, one of which is the Myall Lakes Dingo Project: a long-term
dingo ecology project that involves local council and the Australian National
Parks and uses MegaDetector as a key aspect of their monitoring efforts. They
first heard about MegaDetector through a WILDLABS community Tech Tuto-
rial, and leveraged the open-source Colab-based demo to run initial tests. When
those were successful they moved to local-based processing at first on univer-
sity GPUs which they used to tune the MegaDetector confidence threshold vs a
manual test set, then got funding to develop their own cloud-based, large-scale
processing pipeline in AWS which they used to process 1.5 million images. Out
of that large set of images they found 48K images with animals that needed to be
manually labeled, reducing their manual labeling effort by 97%. Their process-
ing workflow uses MegaDetector to filter empty images and images containing
humans or vehicles, and then uploads animal images to Zooniverse to be labeled
to species by community scientists. They’ve also learned a lot via MegaDetector
about what aspects of camera placement were leading to increased false positives,
and have changed their placement strategies to avoid roads and paths, avoided
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angles with direct sun exposure, and started doing active vegetation clearing to
avoid false positives from waving foliage.

6.5 Australian Wildlife Council

Damien Kerr and Ivory Lu work for the Australian Wildlife Council (AWC), a
nonprofit that runs 30 wildlife sanctuaries covering over 12.5 million hectares
of land across Australia which are formed via partnerships with indiginous and
paturalist communities. They put over 100km-long feral-predator-proof fencing
around the sanctuaries and remove feral cats and other feral predators, which
have been found to eat or destroy up to a dozen native animals per day. They
have camera traps monitoring all of their sanctuaries, but processing before us-
ing the MegaDetector was time consuming as 90% of their images are empty.
Some sanctuaries are using camera traps to help clear a fenced area of feral
predators, they have cameras out continually and need as close to real-time pro-
cessing as possible, and only care about sightings of the feral predators they are
attempting to eliminate. For them, false negatives are a significant issue, and
they use MegaDetector with a lower confidence threshold to reduce the risk of
missing a predator. Other sanctuaries are working on research around conser-
vation outcomes within the fenced sanctuaries and run grids of 100 cameras,
they want to detect and classify every species they see. For this use case they
want fewer false positives and high accuracy, and are particularly interested in
rare species. Only in the last 5-6 years has there been a national broadband net-
work in Australia, before that the ecologists at each sanctuary did all their data
classification manually and the data was held within site-based servers. If data
needed to be centralized it was put on on a hard drive, driven 10 hours to the
nearest post office, and then picked up by a mail plane which could sometimes
take up to a week. Three years ago the broadband speeds finally increased to the
point for it to be viable to move their large datasets to the cloud directly from
the sanctuaries, which made cloud-based computer vision data processing a vi-
able option for them. AWC had already collected over 300K labeled camera trap
images from Australia that they shared with the MegaDetector team to be able
to train MDv3. We labeled many of the images with bounding boxes for detector
training, particularly from Northeast Australia which was an ecosystem we found
the v2 model struggled with (lush, tropical rainforest). They started using the
MegaDetector v3 model on their data in 2019 via a grant from Microsoft AI for
Earth, however when they tried to use the model on arid landscapes they found
it struggled on reptiles, so they again sent data to help expand the coverage and
variability seen during training for the v4 model and saw a significant improve-
ment. They have found that MegaDetector gives them an 89-90% speedup in
processing their data. At one sanctuary they were able to process 500K images
in about 70 hours, “This is a game changer for our ecologists.” The ecologists
have built up trust in the models over time based on systematic manual verifica-
tion over time. They check MegaDetector’s empty filtering based on confidence
thresholds and process as they go, and over time have streamlined this verifi-
cation process. They currently sample 1000 images at seeral different detection
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confidence operating points to verify performance of MD for each large batch.
AWC previously used the batch API with some assistance from the MegaDetec-
tor team. Now they use their own centralized cloud-based datastore, and Ivory
has built out documentation to help ecologists better use the MegaDetector API
to get their own data processed in the cloud. AWC sanctuaries currently run
their own data through the MegaDetector batch API on Azure, then they get
the results back and use Timelapse locally at each sanctuary to ID to species.

7 Lessons learned

The key aspects of the MegaDetector that enable it’s widespread adoption, use,
and impact are (1) that it works reliably off-the-shelf for many organizations
globally, (2) that it fills a significant need in the community (filtering empty
images and localizing animals of interest), and its use saves organizations sig-
nificant time and money when processing their camera trap data, and (3) that
the model and code are open-source and many different access points to use are
provided based on the skillset of the ecologist, from setting up data pipelines
and running the model on their own in-house GPUs to recieving model results
back from a batch API after a simple data upload that can be easily visualized
and corrected within their existing camera trap processing workflows, incor-
porated within tools that are already widely used by the community such as
TimeLapse. This demonstrates how rigorous and representative evaluation that
carefully avoids potential overfitting or data poisoning due to strong spatiotem-
poal correlations between training and test data is vital to understanding the
generalizability and thus useability of machine learning. The choice to reduce
the granularity of the class set to just humans, animals, and vehicles based on
systematic evaluation enabled the model to generalize more robustly and thus
facilitated that off-the-shelf use. Further, this demonstrates the value of commu-
nity engagement and direct collaboration with domain experts in order to under-
stand and address domain-specific and project-specific risks, and to understand
how to meet the community where they are and make automated approaches
accessible for organizations and stakeholders with varied backgrounds, skillsets,
and needs.

One significant lesson learned is that AI alone is far from enough. A good
model is nothing without data infrastructure, including a scalable pipeline for
data to migrate from the field to the model and tools for experts to interact
with and correct imperfect model results. Another lesson learned is around the
sustainability of industry collaboration: after Microsoft AI for Earth stopped cov-
ering the costs of the MegaDetector API in 2022, both AWC and HaMARAAG,
high-throughput users, found API use to be cost-prohibitive at their scale of
use and are in the process of switching to running on their own local servers of
GPUs. Though this does require upfront investment, empowering conservation
organizations to be self-reliant and in control of their use of AI-based solutions
moves power back into the hands of stakeholders. Though in-house camera trap
data processing with the MegaDetector is not accessible to all users, it is excit-
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ing to see some conservation organizations take this leap and even go beyond to
training their own in-house species classification models for their fixed camera
networks. Finally, ecological expertise is invaluable when moving beyond raw
data processing to decision making, policy determination, and resource alloca-
tion. Enabling ecologists to be efficient with their time and interact with AI
models in flexible ways is key to impactful and well-grounded AI solutions to
conservation and biodiversity challenges.
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