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Abstract. Youth experiencing homelessness (YEH) are subject to sub-
stantially greater risk of HIV infection, compounded both by their lack
of access to stable housing and the disproportionate representation of
youth of marginalized racial, ethnic, and gender identity groups among
YEH. A key goal for health equity is to improve adoption of protective
behaviors in this population. One promising strategy for intervention is
to recruit peer leaders from the population of YEH to promote behaviors
such as condom usage and regular HIV testing to their social contacts.
This raises a computational question: which youth should be selected as
peer leaders to maximize the overall impact of the intervention? We de-
veloped an artificial intelligence system to optimize such social network
interventions in a community health setting. We conducted a clinical
trial enrolling 713 YEH at drop-in centers in a large US city. The clin-
ical trial compared interventions planned with the algorithm to those
where the highest-degree nodes in the youths’ social network were re-
cruited as peer leaders (the standard method in public health) and to an
observation-only control group. Results from the clinical trial show that
youth in the AI group experience statistically significant reductions in
key risk behaviors for HIV transmission, while those in the other groups
do not. This provides, to our knowledge, the first empirical validation
of the usage of AI methods to optimize social network interventions for
health. We conclude by discussing lessons learned over the course of the
project which may inform future attempts to use AI in community-level
interventions.

This chapter is adapted from a paper published in the 2021 AAAI Con-
ference on Artificial Intelligence.

1 Introduction

Each year, approximately 4.2 million youth in the United States experience some
form of homelessness [26]. One of the key health challenges for this population
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is high HIV prevalence, with reported prevalence in the range of 2-11% [45], up
to 10 times the rate for youth with access to stable housing [28].

One proposed mechanism for fostering behavior change in high-risk popula-
tions is the peer change agent model. The main idea is to recruit peer leaders
from the population of youth experiencing homelessness (YEH) to serve as advo-
cates for HIV awareness and prevention. Use of peer leaders has been suggested
in the public health and social science literature due to the central role that
peers play in risk behaviors for YEH, including related to HIV spread [15, 32,
31]. Indeed, peer change agent models have succeeded in past HIV prevention in-
terventions in other contexts [25]. However, there have also been notable failures
[16], and it has been argued such failures may be attributable to how peer lead-
ers are selected [33]. The long-standing and most widely adopted method in the
public health literature for selecting peer leaders is to identify the most popular
individuals in the social network of the youth [20] (formally, the highest degree
nodes). This poses the question: are high-degree youth the best peer leaders to
disseminate messages about HIV prevention? This question has relevance far
beyond HIV prevention; analogous social network interventions are used widely
across development, medicine, education, etc. [22, 29, 2, 36].

Information dissemination on social networks is the focus of a long line of
research in computer science. In particular, the influence maximization problem,
formalized by [21], asks how a limited number of seed nodes can be selected from
a social network to maximize information diffusion. Influence maximization has
been the subject of extensive work by the theoretical computer science and ar-
tificial intelligence communities [8, 7, 14, 4, 34]. However, to our knowledge, no
work prior to this project had connected the computational literature on influ-
ence maximization to the use of network-driven interventions in public health
and related fields. Computational work has mainly focused on developing highly
efficient algorithms for use on large-scale social media networks (often motivated
by advertising), while interventionists in health domains have not used explic-
itly algorithmic approaches to optimize the selection of peer leaders. Previous
computational work assumed access to data (e.g., the full network structure and
a model of information spread) which are simply not available in a public health
context.

This paper reports the results of a project which bridges the gap between
computation and health interventions. As a research team composed of com-
puter scientists and social workers, we developed, implemented, and evaluated
an intervention for HIV prevention in YEH where the peer leaders are algorithmi-
cally selected. This intervention was developed over the course of several years,
alternating between algorithm design and smaller-scale pilot tests to evaluate
feasibility. The final system, which we refer to as CHANGE (CompreHensive
Adaptive Network samplinG for social influencE), was evaluated in a large-scale
clinical trial enrolling 713 youth across two years and three sites. The trial com-
pared interventions planned with CHANGE to those using the standard public
health methodology of selecting the youth with highest degree centrality (DC), as
well as an observation-only control group (OBS). Results from this clinical trial
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demonstrate that CHANGE was substantially more effective than the standard
DC method at increasing adoption of behaviors protective against HIV spread.
To our knowledge, this is the first empirically validated success of using AI meth-
ods to improve social network interventions for health. It is critically important
for “AI for Social Good” work to result in deployed and rigorously evaluated
interventions, and this paper provides one such example.

The remainder of the paper is organized as follows. First, we survey related
work from both a computational and application perspective. Second, we intro-
duce a formalization of the problem of selecting peer leaders from a computa-
tional perspective. Third, we briefly review the design of the CHANGE system to
address this problem (deferring most details to earlier technical publications [41,
39, 40]). Fourth, we present the design of the clinical trial. Fifth, we present and
analyze results from the trial. Sixth, we discuss lessons learned over the course
of the project which may help inform future attempts to design and implement
AI-augmented public health interventions.

2 Related Work

A great deal of research in computer science has been devoted to the influence
maximization problem. The majority of this has focused on computationally
efficient algorithms for large networks [8, 7, 14, 4, 34] and assumes that the un-
derlying social network and model of information diffusion are perfectly known.
There is also more recent literature on algorithms to learn or explore these
properties. Predominantly though, such work requires many repeated interac-
tions with the system. For example, algorithms to estimate the parameters of an
unknown model of information diffusion [11, 30, 27, 18, 19] typically require the
observation of hundreds of cascades on the same network. Collecting this amount
of data is intractable for public health interventions, where a single round of the
intervention takes months. Other work concerns the bandit setting, where the
algorithm can repeatedly select sets of nodes and observe the resulting cascade
[38, 9, 37]. Similarly, these algorithms accept poor performance in early rounds
as the price for improvement over the long run, but waiting tens or hundreds
of rounds for improved performance is not an option in our domain. Such tech-
niques are a much better fit for problems concerning online social networks (for
example, in advertising domains) where repeated experiments and large datasets
are possible.

The most closely related related computational work to ours concerns a ro-
bust version of the influence maximization problem [17, 6, 24], building on the
earlier work of [23] on general robust submodular maximization problems. Our
algorithm for robust submodular optimization, for which an overview is provided
below, differs from these approaches mainly in that it solves a fractional relax-
ation of the problem instead of repeatedly calling a greedy algorithm for discrete
submodular optimization, which helps improve computational performance.

There is a large literature on social network interventions in public health
[36, 22], clinical medicine [44], international development [5, 2], education [29],
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etc. Common strategies involve selecting high degree nodes (as compared to in
our trial), selecting nodes at random, or asking members of the population to
nominate others as influencers. The empirical evidence for the relative effective-
ness of different strategies is mixed; [22] reports no or marginal improvement for
nominations vs random selections (depending on the outcome measure), while
[3] report statistically significant improvements for a nomination-based selection
mechanism. [10] introduce improved statistical methods to compare the effec-
tiveness of seeding strategies and conclude that nomination-based strategies do
not measurably improve performance. Indeed, [1] show that in some theoretical
network models it may be preferable to recruit a slightly larger number of influ-
encers at random rather than carefully map the network. We contribute to this
literature by developing and empirically evaluating an algorithmic framework
which combines both features reminiscent of the nomination-based strategies
proposed by others (for gathering information about network structure) as well
as robust optimization techniques for jointly optimizing the entire set of influ-
encers who are selected (not part of previous empirically evaluated strategies).
Our clinical trial demonstrates statistically significant improvements from this
strategy compared to the baseline of selecting high-degree nodes, providing (to
our knowledge) the first real-world evidence that systematic optimization leads
to improved results.

3 Problem Statement

The population of youth are the nodes of a graph G = (V,E). We seek to
recruit a set of youth S to be peer leaders, where |S| ≤ k. In domain terms,
this budget constraint reflects the fact that peer leaders are given a resource-
intensive training and support process. The objective is to maximize the total
expected number of youth who receive information about HIV prevention, given
by the function f(S). Here, f encapsulates the dynamics of a probabilistic model
of information diffusion across the network (discussed below). The optimization
problem max|S|≤k f(S) is the subject of the well-known influence maximization
problem. When the objective function f is instantiated using common models
for information diffusion, the resulting optimization problem is submodular (i.e.,
there are diminishing returns to selecting additional peer leaders). While finding
an optimal solution is NP-hard, a simple greedy algorithm obtains a (1− 1/e)-
approximation [21].

The most common choice for the model of information diffusion is the in-
dependent cascade model. In this model, each node who receives information
transmits it to each of their neighbors with probability p. All such events are
independent. The process proceeds in discrete time steps where each newly in-
formed node attempts to inform each of their neighbors, and concludes when
there are no new activations. f(S) calculates the number of nodes who receive
information when the nodes S are informed at the start of the process, in ex-
pectation over the random propagation.
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The standard influence maximization problem concludes here. However, while
developing an algorithmic framework applicable to public health contexts, we
came across challenges which must be solved before, during, and after the setting
imagined in standard influence maximization. These challenges opened up new
algorithmic questions, addressed in a series of publications in the AI literature
[41, 39, 40]. Here, we detail three steps for deploying an influence maximization
intervention in the field.

First, information about the network structure G must be gathered. Previous
work on influence maximization assumed that the network structure is known
in advance. While this assumption may be reasonable for online social networks,
we aim to disseminate information through the network consisting of real-world
interactions between youth at a given center. Moreover, pilot studies revealed
that information from an online social network (Facebook) was a poor proxy for
actual connections at the center – not all youth used Facebook, and of those
who did, many were not friends with their actual contacts at the drop-in center.
Instead, network information must be gathered through in-person interviews
where social workers ask youth to list those who they regularly interact with.
Collecting data in this manner is time-consuming and expensive, often requiring
a week or more of effort on the part of the social work team. Accordingly, the
first stage of our algorithmic problem is to decide which nodes to query for
network information. The algorithm is allowed to make M queries, where each
query reveals the edges associated with the selected node. The queries can be
adaptive, i.e., the choice of the ith node to be queried can depend on the answers
given by nodes 1...i− 1.

Second, this network information is used to select an initial set of peer leaders.
This stage more closely resembles the standard influence maximization problem.
However, there is an additional complication that the propagation probability p
is not known. Indeed, there is no data source from which it could be inferred (as
opposed to online platforms with abundant data; see related work). Instead, we
formulate an uncertainty set U containing a set of possible values for p which are
consistent with prior knowledge (in CHANGE, we took U to be a discretization
of the interval [0,1], reflecting limited prior knowledge). The aim is to find a set
S which performs near-optimally for every scenario contained in U . Formally,
this corresponds to the robust optimization problem

max
|S|≤k

min
p∈U

f(S, p)

OPT (p)

where OPT (p) denotes max|S|≤k f(S, p), i.e., the best achievable objective value
if the propagation probability p were known. Normalizing by OPT (p) encour-
ages the algorithm to find a set S which simultaneously well-approximates the
optimal value for each p ∈ U and avoids the trivial solution where solution to
the inner min problem is always the smallest possible value of p. Note that since

OPT (p) is constant with respect to S, f(S,p)
OPT (p) remains submodular with respect

to S. Robust optimization of submodular functions is substantially more diffi-
cult than optimization of a single submodular function; in fact, it is provably
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inapproximable in general [23] and the aim is instead to approximate a tractable
relaxation of the problem.

Third, after an initial set of peer leaders S is identified, recruitment proceeds
in an adaptive manner. Not all youth invited to become peer leaders will actually
attend the training session. A number of potential barriers exist, e.g., a given
youth could have been arrested or not have had enough money for a bus ticket.
Formally, we model that each youth who is invited will actually attend with
probability q (based on experience in pilot studies, we took q = 0.5), where
the attendance of each youth is independent of the others. For a given value
of p, the resulting objective function is f(S, p, q), which takes an expectation
over both the randomness in which nodes are successfully influenced at the start
of the process and in the subsequent diffusion. It is easy to show [41] that f
remains submodular with this additional randomness. Because of this variation
in attendance, as well as capacity limits for the initial training, peer leaders
are recruited over multiple rounds, where the peer leaders selected in round t
can depend on those who were successfully recruited in rounds 1...t− 1. In each
round t, we select a set of peer leaders St with |St| ≤ kt and observe which nodes
are successfully recruited as peer leaders. The process continues for T rounds in
total.

4 Method

Our final proposed system for intervention planning is called CHANGE. CHANGE
was originally introduced in [41]. The final version of CHANGE summarized here
is nearly the same as the original, with the exception of the algorithm used for
robust optimization, which was separately developed and published in [39]. We
now provide an overview of CHANGE, mirroring the steps of the earlier problem
formulation.

Network sampling CHANGE uses a simple but well-motivated heuristic to
select a subset of nodes to be queried for network information (in the discussion
section, we briefly review our earlier work on a more theoretically sophisticated
solution, and the rationale for choosing a simpler method). The chosen method
splits the query budget M into two halves. Each query in the first half is made
to a node selected uniformly at random from the network. Each query in the
second half follows a query in the first half, and selects a uniformly random
neighbor of the first node. This design is motivated by the friendship paradox,
the observation that high-degree nodes are overrepresented when we sample ran-
dom neighbors [12]. Hence, the two stages of the query process balance between
competing objectives: the first step encourages diversity, since random sampling
ensures that we cover many different parts of the network, while the second
step tends towards high-degree nodes who can reveal a great deal of network
information.
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Robust optimization We now provide an overview of how CHANGE handles
parameter uncertainty within a single stage of the planning process, before con-
sidering the multi-stage problem (with uncertain attendance) below. As men-
tioned above, max-min submodular optimization is NP-hard to approximate
(within any nonzero factor) [23]. Accordingly, we need to somehow relax the
problem to obtain meaningful guarantees. Let I denote the set of all feasible
solutions (sets S where |S| ≤ k) and ∆(I) be the set of all distributions over I
(i.e., the |I|-dimensional simplex). We developed an algorithm for the problem

max
D∈∆(I)

min
p∈U

E
S∼D

[
f(S, p)

OPT (p)

]
(1)

which allows the algorithm to select a distribution over feasible sets and evaluates
the worst case only in expectation over this distribution. In game theoretic terms,
this allows the algorithm to select a mixed strategy instead of a pure strategy.
At run-time, we sample from D; the resulting set has guaranteed performance in
expectation over the sampling, but strong guarantees cannot be obtained ex-post
for the sampled set (as a result of the computational hardness of the original
max-min problem). However, in practice we find that sampling several random
sets and selecting the best one gives excellent empirical performance (i.e., closely
matching or exceeding the expected value of the distribution).

Our algorithm for this problem, detailed in [39], uses a compact representa-
tion of the space of distributions (keeping track of only the marginal probability
that each node is selected instead of each of the exponentially many potential
subsets). It solves a fractional relaxation of the discrete max-min problem using
this compact representation via a stochastic first-order method which is adapted
to the particular properties of the objective. Then, we can use known rounding
algorithms for submodular maximization to sample random sets from the dis-
tribution encoded by the solution to the fractional relaxation. This procedure
guarantees a (1− 1/e)2-approximation for Problem 1, which can be improved to
(1 − 1/e) with some additional steps (which we did not find empirically neces-
sary).

Multi-stage intervention with attendance uncertainty We handle the
multi-stage nature of the intervention by running the robust optimization prob-
lem at each stage, calculating the objective function in expectation over which
peer leaders will attend and conditioning on the selection of those who have
attended previous interventions. Formally, this means that at stage t > 1, we
solve

max
D∈∆(I)

min
p∈U

E
St∼D

[
f(St ∪ S1 ∪ ... ∪ St−1, p, q)

max|S∗|≤k f(S∗ ∪ S1 ∪ ... ∪ St−1, p, q)

]
where S1...St−1 denote the sets of peer leaders who were succsesfully recruited
in each previous stage. It is easy to show that the inner objective f remains
submodular in St (see [41]), and so we retain the earlier guarantees on the
quality of the solution obtained at each individual step. Moreoever, in [41] we
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show that the multi-stage problem as a whole enjoys the property of adaptive
submodularity, meaning that for any fixed parameter value p, solving

max
D∈∆(I)

E
St∼D

[
f(St ∪ S1 ∪ ... ∪ St−1, p, q)

max|S∗|≤k f(S∗ ∪ S1 ∪ ... ∪ St−1, p, q)

]
at each step t and selecting the resulting set St enjoys an approximation guaran-
tee relative to the optimal adaptive policy for selecting a sequence of sets S1...St

(again, with respect to a fixed p). More detailed discussion of the theoretical
properties can be found in [41].

5 Field Evaluation

5.1 Study design

Fig. 1: Number of participants recruited and retained in each arm of the study.

We now move to the empirical portion of the project and provide an overview
of the design of the clinical trial. All study procedures were approved by our
institution’s Institutional Review Board. The study was designed to compare
the efficacy of two different means of selecting peer leaders: the CHANGE sys-
tem described above and the standard DC approach in public health (selecting
the highest-degree youth). We additionally included an observation-only control
group (OBS), for three arms in total. The study was conducted at three drop-in
centers for YEH in a large US city. Drop-in centers provide basic services to
YEH (e.g., food, clothing, case management, mobile HIV testing). Due to high
transience in the YEH population, most clients at a given center leave within
approximately six months. Accordingly, we tested each of the three methods at
each of the the three drop-in centers (giving nine deployments in total, each
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with a unique set of youth)1, ensuring that successive deployments at a given
drop-in center were separated by six months. Youth were only allowed to enroll
in the study once, so even the small number of youth who were present at the
center across multiple deployments were included only on the first time they
attempted to enroll. Testing each method at each drop-in center helps account
for differences in the demographic and other characteristics of youth who tend
to access services at each center.

Each of the nine deployments used the following procedure. Figure 1 shows
the number of youth recruited and retained for each phase of the study in each
arm.

First, youth were recruited at the drop-in center over the course of a week
to participate in the study. All participants gave informed consent. Each partic-
ipant completed a baseline survey which assessed demographic characteristics,
sexual behaviors, and HIV knowledge. Demographic characteristics included age,
birth sex, gender identity, race/ethnicity, and sexual orientation. Youth were also
surveyed about their living situation and relationship status.

Second, peer leaders were selected and trained (for the CHANGE and DC
arms of the study). Each individual training consisted of approximately 4 youth
and there were 3-4 trainings per deployment (depending on exact attendance).
In total, approximately 15% of survey participants in each deployment were
trained as peer leaders. In the CHANGE arm of the study, network information
was queried from approximately 20% of the participants (sampled according
to the mechanism described above). In the DC arm, we used a full survey of
the network to find high-degree nodes, in order to give the strongest possible
implementation to compare to.

Third, peer leaders had three months to disseminate HIV prevention mes-
sages. Peer leaders were supported via 7 weeks of 30-minute check-in sessions
with study researchers, which focused on positive reinforcement of their successes
as well as problem-solving strategies and goals for the future. All peer leaders
attended at least one check-in session, with modal attendance at five sessions.
Peer leaders received $60 in compensation for attending the initial training and
$20 for each check-in session.

Fourth, follow-up surveys were administered to the original study partici-
pants from the first step. Follow-up surveys assessed the same characteristics
as the baseline survey. Differences in reported sexual behavior between baseline
and follow-up were used as the primary metrics to evaluate the interventions.
All such metrics were self-reported; we followed best practices in social science
research to minimize bias in self-reported data (surveys were self-administered
on a tablet and participants were guaranteed anonymity, each of which aim to
reduce social desirability bias in reporting sensitive information). Additionally,
any bias would be expected to influence each arm of the study equally, including
the observation-only control group.

1 Randomizing treatments at an individual level is clearly impossible for an social
network intervention, so this is an example of a quasi-experimental design where
entire populations of youth were assigned to one treatment or another.
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The training component of the peer change agent intervention was delivered
by two or three facilitators from the social work research team. The training
lasted approximately 4 hours (one half-day). Training was interactive and bro-
ken into six 45-minute modules on the mission of peer leaders (sexual health, HIV
prevention, communication skills, leadership skills, and self-care). Peer leaders
were asked to promote regular HIV testing and condom use through communi-
cation with their social ties at the drop-in center.

We now present the results of the clinical trial, starting with an overview of
the outcome variables and methodology for statistical analysis, and then giving
the main results.

5.2 Outcome variables

We compare two outcome variables across arms of the study. First, condomless
anal sex (CAS), assessed via a survey question asking whether youth had anal
sex without a condom at least once in the previous month. Second, condomless
vaginal sex (CVS), assessed via a survey question asking whether youth had
vaginal sex without a condom at least once in the previous month. CAS and
CVS are both important behavioral risk factors for HIV transmission and so
provide a direct assessment of the success of the intervention at producing a
material health impact.

5.3 Statistical methodology

We provide both the average value of each outcome variable at each time point
for the three arms of the study as well as an analysis of statistical significance.
The statistical analysis used a generalized estimating equations (GEE) model.
GEE is an extension of generalized linear models which incorporates repeated
measurements of data across a population. It is a standard choice for analysis of
clinical data in this form [46]. We specified a linear model for each outcome vari-
able which included terms for both the improvement caused by participating in
a given arm of the study (our estimand of interest) as well as terms for a range of
control variables which account for differences in demographics and the baseline
rate of risk behaviors in each arm of the study. The demographic control vari-
ables were age, birth sex, transgender identity, LGBQ identity, the combination
of male sex and LGBQ identity, race, committed relationship, housing status,
and drop-in center. We also included a “time” variable to account for changes
in the entire population over time regardless of participation in a particular arm
of the study. This combination of control variables helps separate the impact
of the intervention from pre-existing differences between arms of the study and
intervention-independent trends.

The linear model combined contributions from each of these variables through
a logistic link function. Since each outcome is binary, we present results in the
form of the odds ratio (OR), which measures the ratio in the odds of the outcome
in youth who are exposed to a given intervention vs youth in the observation-only
group (after controlling for demographics and baseline rate of risk behaviors).
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For all quantities, we also present 95% confidence intervals and indicate where
significant p-values are obtained.

Results are known only for youth who completed the follow-up surveys, lead-
ing to missing data due to participant attrition (as is expected for a study
enrolling YEH). Of the 713 participants who completed the baseline survey, 245
(34%) missed the 1-month follow-up, 300 (42%) missed the 3-month follow-up,
and 180 (25%) missed both follow-ups. However, missingness had no statistically
significant association with CAS or CVS, indicating that youth were not signif-
icantly over or under represented in the follow-up data based on their baseline
level of risk behavior.

CAS CVS

OR CI OR CI

Baseline

CHANGE 1.43 0.91, 2.28 0.77 0.52, 1.13

DC 1.49 0.89, 2.48 1.07 0.67, 1.68

Post-intervention

CHANGE 0.69* 0.49, 0.98 0.78† 0.57, 1.04

DC 0.80 0.55, 1.17 0.88 0.62, 1.23

Time 1.05 0.82, 1.33 0.87 0.71, 1.06

Table 1: Results of statistical analysis. Each column gives the effect size and con-
fidence interval for one of the outcome variables. Each row gives the correspond-
ing estimates for one of the variables included in the GEE model. The “baseline”
category measures pre-existing differences between the groups (relative to the
observation-only group) on enrollment in the study. The “post-intervention”
category measures the estimated impact of participating in each arm of the in-
tervention (relative to the observation-only group, and after controlling for both
demographics and baseline behaviors). “Time” gives the estimated contribution
of a trend over time independent of which arm of the study a participant was
enrolled in. †p < 0.1; ∗p < 0.05.

5.4 Results

We start by presenting the main results of the statistical analysis; the full results
can be found in Table 1.

CAS We find that CAS reduced in the CHANGE group over time by a sta-
tistically significant amount (OR = 0.69, p < 0.05). The estimated OR of 0.69
indicates that, in the GEE estimates, a youth who is enrolled in the CHANGE
arm of the study has 31% lower odds to engage in CAS than if they were enrolled
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in the observation-only group. That is, a youth who is enrolled in CHANGE has
31% lower odds to engage in CAS post-intervention than a youth with identical
starting characteristics (including baseline rate of CAS) who did not receive the
intervention. For the DC group, there was not a statistically significant change
in CAS over time relative to the observation-only group.

CVS The GEE model estimated that CVS decreased by a marginally statisti-
cally significant amount in the CHANGE group (OR = 0.78, p < 0.1). For the
DC group, there was no statistically significant change in CVS over time relative
to the observation-only group.
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Fig. 2: Average value of each outcome variable at each point in time for the three
arms. These plots show the results without any statistical processing, while the
analysis above attempts to control for pre-existing differences between partici-
pants in each arm.

We conclude from the analysis that only CHANGE provided a statistically
significant improvement in HIV risk behaviors compared to the observation-only
baseline.

Direct examination of the average values of the outcome variables for each
arm at each point in time (Figure 2) shows another interesting trend. Improve-
ments in the CHANGE group happen faster than the DC group: most of the
improvement for CHANGE occurs by the one-month survey, while improvements
in the DC group are not fully realized until month three. Fast results are im-
portant for two reasons. First, rapid adoption of protective behaviors helps to
immediately curtail transmission in a high-risk population. Second, high tran-
sience among YEH means that a non-negligible portion of youth will have left
the center by the time a three-month intervention is completed. We conclude
that the AI-augmented intervention implemented with CHANGE has substan-
tial advantages over an intervention where peer leaders are selected with the
standard DC method.
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6 Lessons learned

This project provides evidence that AI methods can be used to improve the ef-
fectiveness of social network interventions in public health: significant reductions
in HIV risk behaviors were observed in groups where our CHANGE method was
used to plan the intervention, with no significant changes in behavior when the
status quo method (selecting high degree nodes) was employed. More broadly,
we hope that our experiences over the course of the project can provide gener-
alizable lessons about how AI research can be successfully employed for social
good. There have been recent attempts by others to synthesize principles for AI
for Social Good research [13, 35]. We offer a complementary perspective shaped
by the process of deploying a specific community-level intervention. In partic-
ular, existing discussions of best practice often focus in large part on ethics,
data privacy, and building trust with stakeholders. While such considerations
are indispensable, it is also important for the research community to investi-
gate the on-the-ground components of developing and deploying an impactful
intervention. We highlight five points.

First, the starting point was to listen to domain experts and understand
where in the problem domain AI could be most impactful. We did not approach
this project with a preexisting intention to apply influence maximization to
the choice of peer leaders. Rather, this emerged organically from discussions
between the AI and social work sides of the research team as a topic where an
AI-augmented intervention was both technically feasible and likely to improve
outcomes. Success is less likely when AI researchers start with a favored technique
and search for an application.

Second, data was overwhelmingly the bottleneck to the AI component of
the intervention. Computational work on influence maximization to date had
largely assumed a great deal of information would be known – the structure of
the graph, the model for information diffusion, etc. None of this information was
in fact available for YEH (or would likely be available in other public health
settings). Moreoever, gathering this data is itself time-consuming and costly,
requiring unsustainable effort on the part of an agency wishing to deploy the
intervention on their own. Much of the technical focus of the research consisted
of finding ways to reduce the amount of data which needed to be gathered
for the intervention to succeed. Finding ways to reduce or eliminate data needs
through improved algorithm design is an important part of producing deployable
AI interventions in a community health context.

Third, simplicity is valuable. As an example, prior to developing CHANGE,
we designed a much more theoretically sophisticated algorithm for collecting
network data which enjoyed provable guarantees for certain families of graphs
[40]. However, it quickly became apparent that this algorithm would be difficult
to deploy in practice because it required a large number of sequential queries
(the node which is queried on step 1 determines the node who is to be queried
on step 2, and so on). This was impractical in the context of a program work-
ing with YEH where any given youth may be difficult to find, interrupting the
entire process. More generally, if the algorithm requires tight coupling with the
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outside world (many steps where information is input, the algorithm recom-
mends a very specific action, more information is input, and so on) then there
are more things that can go wrong which are not captured in the computational
formalization of the problem. This poses a contrast to the way that simplicity is
often operationalized in AI for social good work as either explainability [13] or
as methodological simplicity [35] (e.g., using well-developed techniques instead
of a new algorithm). Both explainability and methodological simplicity are of
course valuable in many settings but in our experience neither was first-order
requirement: the algorithm can solve a complex optimization problem internally
so long as the way that it interacts with the outside world is simple and ro-
bust. We believe that this operational simplicity is an under-emphasized design
criterion for AI for Social Good.

Fourth, smaller pilot tests were a valuable part of the project prior to em-
barking on a larger clinical trial. We conducted several such tests, each of which
consisted of a deployment at a single drop-in center, in order to test earlier ver-
sions of our system [41–43]. This helped reveal key issues which needed to be
addressed. For example, we quickly discovered that a plan to collect network
information via Facebook was not viable with this population and that manual
collection of network data entailed a great deal of effort. We also quickly ob-
served that peer leaders often did not attend the training, requiring on-the-fly
adjustments over the course of the program. Addressing such issues was neces-
sary to the success of the overall project (and turned out to provide much of the
technical challenge involved). It would have been very difficult to identify these
challenges without piloting algorithms in the actual environment where they will
be used. It was also helpful for computer scientists on the research team to be
regularly present onsite during the pilot deployments to learn more about the
environment and help coordinate the initial attempts at using the algorithm.

Fifth, community engagement and trust was essential to the success of the
project. Beyond the research team, a number of stakeholders needed to be in-
volved in the process. For example, we needed buy-in from each of the drop-in
centers to conduct the study at the center, enroll their clients, and use their fa-
cilities. We regularly convened a community advisory board with representatives
from each of the drop-in centers along with members of the research team to
provide information about the study progress, explain the methods being used,
and share information which could be helpful to other center activities. Just as
critical as the center leadership though, were the youth themselves. We asked
youth to disclose sensitive information, including their HIV risk behaviors and
social contacts. Especially for the YEH population, which is less inclined than
most to engage with authority figures, building trust is essential. We found two
factors to be especially important in establishing this trust. First, the social
work portion of the research team had deep roots in the community, having
regularly offered services at these drop-in centers for the past ten years. Sec-
ond, transparency about why information was being collected was critical. We
observed substantially increased willingness to disclose information related to
social contacts when researchers explained how this information would be used
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in the study (i.e., that a computer program would be used to select some people
as peer leaders based on their contacts) than when such an explanation was not
proactively given. A critical part of the peer change agent model is empowering
youth to make a difference in their community, and this philosophy extends to
the way that AI should be used in a community setting.

Our hope is that this project provides one example towards a broader research
agenda aiming at AI techniques which can be successfully used to improve health
and equity within our communities. A great deal of work remains. Just within
the context of social network intervention, future work should explore other
intervention designs (e.g., interventions which attempt to modify network struc-
ture by fostering supportive relationships), methods for further reducing data
requirements (e.g., by using administrative data to infer social connections), and
more deeply investigate the relationship between information diffusion and be-
havioral change. However, the results from this clinical trial provide evidence
that AI can substantially improve the quality of services offered to the most
vulnerable among us.
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