
AI for Food Rescue

Zheyuan Ryan Shi,1,3 Yiwen Yuan,1⋆ Kimberly Lo,1⋆Ameesh Kapoor,2
Anthony Levin-Decanini,2 Sean Hudson,2 Jake Tepperman,2 Leah Lizarondo,2

Fei Fang1

1Carnegie Mellon University
2412 Food Rescue

398Connect

Abstract. The challenges of food waste and insecurity arise in wealthy
and developing nations alike, impacting millions of livelihoods. A ma-
jor force to combat food waste and insecurity, food rescue organizations
match food donations to the non-profits that serve low-resource commu-
nities. However, they rely on external volunteers to pick up and deliver
the food, which bring significant uncertainty to the food rescue opera-
tion. We work with 412 Food Rescue, a large food rescue organization,
to predict and address this uncertainty. We make the following contri-
butions. (1) We train a stacking model which predicts whether a res-
cue will be claimed with high precision and AUC. This model can help
the dispatcher better plan for backup options and alleviate their uncer-
tainty. (2) We develop a data-driven optimization algorithm to compute
the optimal generic intervention and notification scheme applicable to
all rescues. The recommended actions have been adopted by 412 Food
Rescue and are shown to have improved the rescue efficiency. (3) We
develop a rescue-specific recommender system to send push notifications
to the most likely volunteers for each given rescue. We leverage a mathe-
matical programming based approach to diversify our recommendations,
and propose an online algorithm to dynamically select the volunteers
to notify without the knowledge of future rescues. Our recommendation
system improves the hit ratio from 44% achieved by the previous method
to 73% on historical data. A randomized controlled trial of this method
is scheduled to take place in the near future.

Keywords: Food security · Food waste · Machine learning · Recom-
mender system.

1 Introduction

Food waste and food insecurity exist in many places around the world. For
example, in the US, over 25% of the food is wasted, with an average American
wasting about one pound of food per day [3]. Meanwhile, 12% of American
households struggle to secure enough food at some point [2]. With the COVID-
19 pandemic, the problem is becoming even worse [5]. Fortunately, from New
⋆ Work done while at CMU.

2 Shi et al.

(a) Screenshot of a rescue
task

(b) Donation picked up at a
cafe

(c) App notification

Fig. 1. 412 Food Rescue operations

York to Colorado, from San Francisco to Sydney, food rescue (FR) platforms are
fighting against food waste and insecurity in over 100 cities around the world.
In the US alone, there are already over 50 cities where FRs are providing basic
necessities to the communities, affecting over a million people. Their operation
has proved to be effective [7]. Food rescue organizations receive edible food from
restaurants and groceries (referred to as “donors”) and send it to organizations
serving low-resource communities (“recipients”). These food rescue organizations
are an important force to fight against food waste and food insecurity, both
included in the United Nations’ Sustainable Development Goals.

Food rescue organizations serve as an intermediary between the food donors
and recipient organizations. As an example, we describe how 412 Food Rescue
(412FR), a large food rescue organization in Pittsburgh, US, 1 connects donors
with recipients, and delivers the food with the help of volunteers. Many other
FR platforms run in similar ways. Donors would call 412FR when they have
food items that they want to donate. After receiving the call, the FR dispatcher
matches this donation with a recipient organization. Once this matching is done,
the dispatcher posts this matching on 412FR’s mobile app. Hereafter, the food
rescue process becomes visible to the volunteers who have the FR’s mobile app
installed on their phone (Fig. 1a). If they choose to claim a rescue on the app, the
app would provide them with the detailed information instructing them where
to pick up the donation and where to deliver. The volunteer then goes out to
complete the rescue trip (Fig. 1b).

1 https://412foodrescue.org/

https://412foodrescue.org/

AI for Food Rescue 3

Relying on volunteers saves cost for the food rescue organization, but volun-
teers also bring a high degree of uncertainty as to whether a rescue would be
claimed or not. Occasionally, some rescue trips stay unclaimed on the mobile
app for a long time. FR dispatchers want to avoid this situation as much as
possible, since unclaimed rescues not only lead to immediate food waste, and
also discourage the donors and recipients from participating in the program in
the long run. Over the years, 412FR has mainly used two methods to get more
rescues claimed. The first one is push notifications. After a rescue request is
posted, the FR’s smart phone app will push notification to volunteers within
5 miles (Fig. 1c). After 15 minutes, if no one has claimed the rescue, the app
will push notification to all available volunteers. However, while it is helpful to
engage with the volunteers, too many notifications might drive them away [4].
The second method is proactive intervention. The dispatchers monitor all the
outstanding rescues. If no one has claimed the rescue by the last hour of its
pickup window, the dispatcher will call the frequent volunteers they are familiar
with to help with the rescue. As such, the dispatcher has a heavy workload.

In this chapter, we introduce the three AI-based modules that we developed
to address the uncertainty issue in food rescue operations. These modules are
developed jointly by AI researchers at Carnegie Mellon University and practi-
tioners at 412FR.

First, to address the uncertainty we first need to understand the uncertainty.
In Section 2.1, we train a stacking model to predict whether a rescue would
be claimed. Our stacking model achieves an AUC of 0.81, serving as a reliable
reference of the risk of a rescue. The model informs the dispatcher how likely a
rescue is going to be claimed, thus helping the dispatcher better plan for backup
options.

Second, we perform data-driven optimization to find the optimal Interven-
tion and Notification Scheme (INS), i.e., when the dispatcher should intervene
and seek help from regular volunteers and when and to whom the notifications
should go out (Section 2.2). We follow the form of notification scheme that
412FR has been using: send the first batch of notification to volunteers within
a certain distance of the pickup location of the rescue, and wait for a certain
period of time before sending the second back of notification to all the available
volunteers. However, we optimize the distance and waiting time. We estimate
the counterfactual rescue outcomes and use a branch-and-bound method to im-
prove computational efficiency. The resulting INS can improve over the current
practice by reducing the number of notifications sent and the dispatcher inter-
ventions, while keeping the rescues’ expected claim rates. Our analysis suggests
to the platform some changes in their current INS, which can save the most valu-
able resources to food rescue: the dispatcher’s attention and volunteers’ interest.
The changes have been implemented in the mobile app of 412FR since February
2020.

Third, as a departure from the generic notification scheme above, we develop
a rescue-specific push notifications scheme (Section 2.3). By treating each res-
cue trip as a “user” and each volunteer as an “item”, we develop a recommender

4 Shi et al.

system to send push notifications to the most likely volunteers for each given
rescue. We then leverage a mathematical programming-based approach to diver-
sify our recommendations. We also propose an online algorithm to dynamically
select the volunteers to notify without the knowledge of future rescues. Our rec-
ommendation system improves the hit ratio from 44% achieved by the previous
method to 73%. A controlled experiment for comparing the previous notification
scheme and this recommender-system-based notification scheme is on the way.

2 Method

2.1 Predicting the Claim Status of Rescues

Our first task is to predict whether a rescue would be claimed. We use the
database of 412FR which contains rescues from March 2018 to May 2019. The
dataset records the time log of each step in the rescue: posting, claimed by
volunteer, and completion, along with the ID of the volunteer who claimed the
rescue. We treat a rescue as unclaimed and assign a negative label if it was
never claimed or if it was claimed within the last hour of the pickup window
by a selected group of volunteers who had done more than 10 rescues within
the last two months. We assume the latter ones had gone through dispatcher’s
intervention and would not have been claimed otherwise. The dataset contains
4574 rescues with 749 negative ones among which 672 were not claimed by anyone
and 77 were claimed within the last hour of the pick up window by the selected
group.

2.1.1 Feature Engineering

We use a number of features for the prediction. The first group of features are
directly related to the rescue, such as the travel time and distance between the
donor and the recipient generated by Google Maps Platform, the weight of the
food, time of day, and which time slot the rescue belongs to.

We also used the weather information on the day of rescue from Climate Data
Online2, including the average temperature, precipitation and snowfall, as data
analysis suggests that weather is correlated with the rescue outcome (Fig. 2a).

The third group of features involve the number of available volunteers near
the donor and recipient’s locations. Instead of using zip code, we evenly divide
the area of operation of 412FR into a grid with 300 cells because the zip code
districts vary a lot in size (Fig. 2b). Each volunteer could set in their app the time
slots they do not want to receive any notifications, which can also be interpreted
as their availability. An active volunteer (AV) in a grid cell for a rescue is one
who had done a rescue in the cell and marked themselves as available for the
rescue’s pick-up time slot in the app. We use as feature the number of AVs in
the donor’s and recipient’s cells and the number of them averaged over the cells
adjacent to the donor’s. The number of AVs who indicate they have vehicles
2 https://www.ncdc.noaa.gov/cdo-web/

https://www.ncdc.noaa.gov/cdo-web/

AI for Food Rescue 5

(a) Claim rate vs. temperature. (b) Percentage of unclaimed rescues by
zip code district.

Fig. 2. Data analysis results. The temperature range i represents (10.5i− 11.5, 10.5i−
1]◦F.

is helpful as well, as those without vehicles might be more constrained in their
choice of rescues.

We also tested some other features such as average household income and
vehicles. However, they do not improve the performance of the model. An exam-
ple of the features we use for the training the machine learning model is shown
in Table 1. These two data points are for illustration purpose and are not real
rescues, as per our agreement with 412FR.

2.1.2 Stacking Model

We first attempted a few baseline models including Gaussian Process (GP)
and Random Forest (RF) with different parameters but got unsatisfying per-
formance, especially with the false positives, i.e. when the rescue is unclaimed
but we predict it as claimed. In the context of food rescue, we want to inform
human dispatchers which rescues will be unclaimed without human intervention
and need extra attention. Thus, false positives can be costly because it may lead
to the ignorance of a rescue in need of intervention and the waste of donated
food, while false negatives are less concerning because it only leads to unneces-
sary extra attention from the human dispatcher. To deal with weak learners, we
use a stacking approach inspired by [8], whose structure is shown in Fig. 3. First,
we split the training data into two sets, DA and DB . We use DA to train various
base models (Fig. 3, 1○) and then we use these trained models to make predic-
tions on DB (Fig. 3, 2○). Finally, we train a meta learner using the base models’
predictions on DB to determine the stacking model’s estimate (Fig. 3, 3○). In
our case, we use 5 GP regressors and 1 RF classifier as the base model. The 5
GPs have different kernels and parameters for length scales. The parameters for
GPs are shown in Table 2. The Random Forest Classifier has 100 estimators and
the max-depth for any decision tree is 9.

6 Shi et al.

Features Rescue 1 Rescue 2
Fastest travel time of rescue 8 min 28 min
Travel distance of rescue 2.4 miles 18 miles
Weight of the food 5 lb 20 lb
Time of day 1pm 2pm
Time Slot Weekday

Afternoon
Weekend
Afternoon

Precipitation 0 0.12 inch
Snowfall 0 0
Average temperature 62 ◦F 76 ◦F

AVs in donor’s cell 20 91
Average AVs in
donor’s neighboring cells

40 250

AVs in recipient’s cell 30 300
AVs in donor and recipient’s
cells with vehicle

21 116

Table 1. Two example data points for the predictive model.

GP 1 2 3 4 5
Kernel DP DP Matern RBF RBF
Alpha 0.5 0.01 0.3 0.1 0.03

Table 2. GP parameters. Alpha is the dual coefficient of training data points in kernel
space. DP means dot product.

All the six models are trained on the same data DA. We use the mean values
of the GPs’ predictions and the binary label of the RF classifier, on DB , as the
input to the neural network meta learner. We report the results in Sec. 2.1.3.

2.1.3 Results

We “predict the future with the past”. As mentioned at the beginning of Sec-
tion 2.1, we treat rescues done by volunteers who have done over 10 rescues in
the last two months in the last hour of the pick-up window as unclaimed. Thus,
we exclude the rescues in the first two months from our prediction task as we do
not have the volunteer history for these early entries. As a result, the training
data consist of rescues from May 2018 to December 2018 and testing data con-
sist of rescues from January 2019 to May 2019. In addition, since the dataset is
imbalanced on the number of claimed and unclaimed rescues, we oversample the
unclaimed rescues so that the ratio of claimed and unclaimed rescues is 1:1. The
oversampling is applied to only the training dataset for the predictive model.

Table 3 shows the stacking model outperforms all baseline models. Moreover,
it yields almost no false positive errors. This is especially important in the food
rescue operation, as the cost of not taking actions to a rescue which turns out

AI for Food Rescue 7

Fig. 3. The stacking model.

Model Accuracy Precision Recall F1 AUC
GB 0.73 0.86 0.82 0.84 0.51
RF 0.71 0.87 0.78 0.82 0.54
GP 0.56 0.88 0.54 0.67 0.60
SM 0.69 1.00* 0.64 0.78 0.81

Table 3. Performance of selected models, GB: Gradient Boosting Classifier, RF: Ran-
dom Forest; GP: Gaussian Process; SM: Stacking Model. * We run the experiments for
SM for 3 times. The precisions are 1.0, 1.0, 0.9969.

unclaimed due to a false positive is much higher than that of an unnecessary
dispatcher intervention due to a false negative.

2.2 Optimizing Intervention and Notification

Our second step is to optimize the intervention and notification scheme (INS) of
412FR, thereby suggesting a guideline for dispatcher intervention and the rules
for sending notifications. Our goal is to reduce the frequency that the dispatcher
intervenes to “save” a rescue, or the mobile app notifications sent, ideally both.

We formalize the problem by defining an INS as a tuple (x, y, z), with x, y, z
described below. When a rescue is posted, the mobile app first sends notifications
to the volunteers who are within y miles from the donor. If no volunteer claims
the rescue within the first x minutes, the app then sends the notification again to
all volunteers who have indicated availability in the corresponding time slot. The
dispatcher monitors the rescue after it is posted. If a rescue has not been claimed
by z minutes before its pickup deadline, the dispatcher intervenes by directly
contacting a group of regular volunteers and asking them if they are willing to
claim it. If wr is the duration from the posting time to the pickup deadline of
rescue r, then the dispatcher intervenes wr−z minutes after the rescue is posted.
We assume that upon the dispatcher’s intervention, with probability µ the rescue
immediately gets claimed, otherwise it has no effect.

412FR has always used a default INS: x̂ = 15 (minutes), ŷ = 5 (miles), and
ẑ = 60 (minutes). We look for the optimal INS in a finite set S of candidate

8 Shi et al.

Fig. 4. The ROC curves of the models

Notation Meaning
x Second round notification time, default x̂
y First round notification radius, default ŷ
z Intervention time from deadline, default ẑ
µ Dispatcher intervention success probability
r r.v.: a rescue, following distribution R.
wr Duration from r being posted to deadline
λ Trade-off of intervention and notification.
s(·) Average number of dispatcher interventions
v(·) Average number of 1st round notifications
q(·) Average number of 2nd round notifications
p(a, ·) Proportion of rescues claimed in a minutes
S Domain of optimization variables (x, y, z)
bi Claim rate lower bound
Table 4. Notations for the optimization problem.

INSs which minimizes

λEr∼R[c1(x, y, z, r)] + Er∼R[c2(x, y, z, r)] (1)

where R is the distribution of rescues, and λ controls the trade-off between two
quantities: the expected number of dispatcher interventions and the expected
number of notifications sent to volunteers. c1 is the average number of dispatcher
intervention for rescue r, c2 is the average number of notifications sent for r given
the INS. We also want to maintain a high claim rate, i.e., Er∼R[c3(ai, x, y, z, r)] ≥
bi for a given set of ai, bi where c3 is the probability that rescue r is claimed
within first ai minutes.

Without knowing the exact distribution R, we can only estimate these ex-
pected values through data. Given a dataset D of rescues under INS (x, y, z),
we define p(a, x, y, z) as the proportion of rescues in D that are claimed in a
minutes; s(x, y, z) as the proportion of rescues in D that are not claimed by
volunteers before the dispatcher intervenes; v(y) as the average number of avail-
able volunteers who are within y miles of the donor who receive the first round

AI for Food Rescue 9

notifications; q(x, y, z) as the average number of available volunteers who receive
the second round notifications. Formally,

p(a, x, y, z) =
1

|D|
∑

r∈D
I (rescue r claimed in a min) ,

s(x, y, z) =
1

|D|
∑

r∈D
I (r not claimed in wr − z min) ,

v(y) =
1

|D|
∑
r∈D

available volunteers within y miles of r

q(x, y, z) =
1

|D|
∑
r∈D

I

(
r not
claimed in x
min

)
×

available
volunteers for
r

Assuming data points in D are sampled from R, we have

Er∼R[c1(x, y, z, r)] ≈ s(x, y, z)

Er∼R[c2(x, y, z, r)] ≈ v(y) + q(x, y, z)

Er∼R[c3(a, x, y, z, r)] ≈ p(a, x, y, z)

Our final optimization problem is as follows.

min
x,y,z

C(x, y, z) = λs(x, y, z) + v(y) + q(x, y, z) (2)

s.t. p(ai, x, y, z) ≥ bi, ∀i ∈ I (3)
(x, y, z) ∈ S

From the historical data and dispatcher’s advice, we could estimate µ, Vy, ai, bi, S.
However, estimating s(·), q(·), p(·) poses significant difficulty. We need to esti-
mate the counterfactual claim time (CCT) for all INSs (x, y, z) ̸= (x̂, ŷ, ẑ).

2.2.1 Counterfactual Claim Time (CCT) Estimation

Given a rescue happened under the default INS (x̂, ŷ, ẑ), we estimate its CCT
under some other INS (x, y, z). We make the following assumptions.

– No matter when a volunteer receives the notification, upon receiving it they
take the same amount of time to respond, and the effect of human interven-
tion is independent of the app notification.

– The intervention outcome is not affected by the INS.
– Given a list of regular volunteers (provided by dispatchers or derived from

data), if a rescue is recorded in the historical data as claimed by a regular
volunteer after the dispatcher intervention time, i.e., w − ẑ minutes after
the rescue is posted, we give the credit to dispatcher intervention. If a rescue
was claimed after the dispatcher intervention time by anyone else, we assume
that the dispatcher’s intervention have failed.

10 Shi et al.

Fig. 5. Construction of the CCT for INS (x, y, z) based on default INS (x̂, ŷ, ẑ). a is the
rescue’s actual claim time. d is the distance from the rescue’s volunteer to the donor.

Suppose the rescue was claimed by volunteer i located d miles from the donor
in the historical data. At a high level, in most cases we compute the claim time
of volunteer i in the new INS (x, y, z) and take that as our CCT estimate. For
example, suppose i is within the first round notification radius, i.e. d ≤ ŷ and
claims the rescue in 7 minutes under (x̂, ŷ, ẑ). This rescue would have a CCT of
12 minutes when x = 5, z = ẑ = 60 and y < d ≤ ŷ, i.e., i is now outside the
first round notification radius. This is because the volunteer i needs 7 minutes
to respond after getting notification, but now they only receive the notification
5 minutes after the rescue is available. We also factor in the effect of dispatcher
intervention when the intervention happens before the CCT k, i.e. wr−z < k. For
rescue r, we report the expected claim time mz(k) = µmin{wr−z, k}+(1−µ)k.
In another scenario, if in the historical data, volunteer i who is not in the first
round notification radius claims the rescue before the second round notification,
we assume the volunteer’s action is due to actively checking the available rescues
and is not affected by the notification. Thus, the CCT remains the same for all
INS. The complete computation is shown in Fig. 5.

Our estimation is conservative, i.e., we will never underestimate the claim
time. This is important in practice, because overestimation may merely lead to
unnecessary resource spent but underestimation may cause a rescue to fail. Our
estimation is accurate when i is within the first round notification radius in the
counterfactual INS but not in the default INS and intervention happens after the
claim time, as i would still be the first volunteer to claim the rescue under the
counterfactual INS. In some other cases, there exists the unobservable possibility
that some other volunteer might claim the rescue before i in the counterfactual
INS, and hence we might overestimate the claim time.

AI for Food Rescue 11

s(x, y, z) xmin ymax zmin

v(y) ymin

q(x, y, z) xmax ymax zmax

Table 5. Replace (unspecified) variables in each term with the extreme values to get
a lower bound.

2.2.2 Solving the Optimization Problem

Given the CCT estimate for each rescue, we can estimate the functions s(·), q(·), p(·)
using the counterfactual dataset. However, there is no closed-form expression for
them. Computing their values at every point in a brute force way is obviously
inefficient. We propose a branch-and-bound algorithm and a feasibility check to
find optimal INS more efficiently.

First, we note that the CCT, as detailed in Fig. 5, is increasing in x and
decreasing in y and z. Since p(·) is the empirical estimate based on the claim
time, if some infeasible INS (x, y, z) does not satisfy claim rate constraint (3),
any INS (x̃, ỹ, z̃) with x̃ ≥ x, ỹ ≤ y, z̃ ≤ z is also infeasible. Thus, we need not
generate CCT for (x̃, ỹ, z̃).

Using a similar observation, we devise our main algorithm, Alg. 2. Note
that s(x, y, z) decreases as x, z decreases and y increases, v(y) decreases as y
decreases, q(x, y, z) decreases as x, y, z increases. Therefore, if we replace all the
variables in all terms with the extreme values in domain S that can minimize
C(x, y, z) (as shown in Table 5), we get a lower bound of C(x, y, z). We define a
subproblem as the original optimization problem with k of the variables in the
INS specified and the remaining ones unspecified for k = 0, 1, 2, 3. To compute
a lower bound for each subproblem, we replace the unspecified variables in each
term with the extreme values according to Table 5. For example, if z is specified,
and x, y are unspecified, we get a lower bound

C̄ = λs(xmin, ymax, z) + v(ymin) + q(xmax, ymax, z)

In Alg. 2, we start with the original problem where none of the variables are spec-
ified (k = 0). We branch to lower level subproblems in the order of z → y → x,
as this order tends to prune the fastest. For each subproblem, we either com-
pute a lower bound, or when all variables are specified, compute the exact cost.
We generate one counterfactual dataset for computing the exact cost (Line 3,
Alg. 1), and at most two datasets when computing the lower bound (Line 8,
Alg. 1), since s(·) and z(·) are minimized at two different INSs and v(·) does not
depend on the CCT. The implicit pruning on Line 3 guarantees Alg. 2 finds the
optimal solution.

2.2.3 Results

After consulting the dispatchers, we take µ = 0.4 as the probability that dis-
patcher intervention is effective. We require that the optimal INS’s claim rate

12 Shi et al.

Algorithm 1: Solve-Relaxation
1 Optional input arguments: x, y, z
2 if all of x, y, z specified then
3 Generate CCTs with (x, y, z).
4 if feasible then
5 Compute cost C̄ = C(x, y, z)
6 return subproblem (C̄, (x, y, z))

7 else
8 Generate CCTs with unspecified parameter replaced by extreme values in

Table 5.
9 Compute lower bound C̄

10 return subproblem (C̄, (x, y, z))

Algorithm 2: Branch-and-Bound for INS
1 Push Solve-Relaxation({}) to Frontier.
2 while Frontier set is not empty do
3 Get subproblem with lowest C̄ from Frontier.
4 if subproblem has all parameters specified then
5 return (C̄, (x, y, z)) // (optimal solution)

6 else
7 Follow the order z → y → x to expand the node, i.e., if the first k

variables are already specified, create a subproblem for each possible
value of the (k + 1)th variable in S.

8 Add all subproblems Solve-Relaxation(x, y, z) to Frontier.

be no worse than default INS. That is, we use ai = 1, 2, . . . 120 and bi being the
empirical claim rate at the ai-th minute under the default INS.

First, we demonstrate the effectiveness of the branch and bound algorithm
(Alg. 2). We set the domain S as x, y ∈ {2, 4, 6, 8} and z ∈ {30, 40, 50, 60}. As
shown in Table 6, branch and bound needs to generate CCTs on much less INSs
than the brute force approach, although advantage is less significant for smaller
λ. In the sequel, we use Alg. 2 and set the domain S as x ∈ {1, 1.5, 2, . . . , 25}, y ∈
{1, 1.5, 2, . . . , 10}, z ∈ {30, 32.5, 35, . . . , 90}.

Similar as above, we use the earlier data Dpast to predict the more recent data
Dfuture. First, we focus on computing the optimal INS on Dpast in Fig. 6a. Both
the 2nd round notification time and the dispatcher intervention time decrease
as λ grows, i.e. the dispatcher’s intervention matters more in the dispatching
cost. This is aligned with the results in Table 5. When the app notification
is the primary concern, the default INS is almost desirable, yet if we would
like to minimize the interventions, the 2nd round notification needs to go out
sooner. Fig. 6b, we show the Pareto frontier (in red) of optimizing on Dpast.
The optimal INSs in Fig. 6a are now shown in blue. The default INS lies within

AI for Food Rescue 13

Brute force search Branch and bound
λ INSs Time (s) INSs Time (s)
107 64 192.6 18 65.5
106 64 183.7 18 64.9
105 64 185.1 16 56.4
104 64 190.9 34 125.0
103 64 187.1 35 129.3

Table 6. Running time and the number of INSs for which the CCTs are generated.

INS Interventions Notifications
A: (16.5, 5.5, 45) −13% (−0.06) 0% (−1)

B: (15.5, 5.5, 32.5) −24% (−0.10) +2% (+46)
Table 7. The projected change in the probability of interventions and number of
notifications of the proposed INSs. The numbers in parentheses are the absolute change.

the frontier, suggesting that the numbers of both interventions and notifications
can be improved. The orange rectangle indicates the INS region that is strictly
superior to the default INS.

Of course, we would like to examine the quality of the optimization solutions
on unseen data. Thus, in Fig. 6c, we show the projected number of interventions
and notifications on Dfuture of the optimal INSs on Dpast. For the same INS,
the performance is different between Fig. 6b and Fig. 6c because the claim prob-
abilities are estimated using the two datasets separately. Despite this difference,
some optimal INSs on Dpast still outperforms the current practice. We therefore
suggest two INSs (see Fig. 6c) to 412 Food Rescue, as shown in Table 7. INS A
is a strict improvement over the current practice, reducing the number of both
intervention and notification. Our second solution, INS B, drastically reduce the
labor of dispatcher by 24% at the expense of a mere 2% increase of notifications
sent. Since 412FR handles 4574 rescues in a 430-day period, INS B can save the
dispatcher over 390 times of intervention a year in expectation. An intervention
takes the dispatcher at least the same amount of time as matching a new food
rescue, and often more. Thus, the dispatcher could handle at least 390 extra
rescues a year, which is over 7500 pounds of food by the average donation in our
dataset. We choose INS B over the rightmost INS on Fig. 6c because 412FR has
relatively more shortage of dispatcher than volunteers. Finally, Fig. 6d shows
our two INSs have competitive claim rates on the unseen data. This suggests the
promise of deploying our method in the future.

2.3 Rescue-Specific Push Notifications

In Section 2.2, we introduced a generic distance-based push notification scheme
that would apply to all rescues. Although the distance between the volunteer
and the pick-up location would clearly matter, it is reasonable to consider if
other factors would also affect the chance that a volunteer would claim a rescue.

14 Shi et al.

(a) Optimal INSs on Dpast (b) Pareto frontier on Dpast

(c) Performance of the optimal INSs for
Dpast on Dfuture

(d) Projected claim rate of two recom-
mended INSs on Dfuture

Fig. 6. Experiment results of the data-driven optimization

This leads to tailoring push notifications to each rescue. That is, for each rescue,
we select a subset of volunteers to send push notifications to. In this section, we
study this as a recommender system problem.

2.3.1 Data

To develop a recommender system, we need both positive and negative labeled
examples. A positive example means that a particular volunteer (item) claims
a particular rescue (user); a negative example means otherwise. In this section,
we detail our data acquisition, labeling, and feature engineering process.

Positive Labels We use the rescue database from 412FR, covering the period from
March 2018 to March 2020. The database keeps the log of each rescue. For most
rescues that have been claimed and completed by a volunteer, we simply take the
rescue plus the volunteer who claimed it as a positive data point. However, the
food rescue operation is not always so neat. Occasionally, the dispatcher knows

AI for Food Rescue 15

ahead of time that some volunteer would do the job, so they directly assign the
volunteer for a particular rescue and bypass the app notification stage. In this
case, we take this direct assignment as a positive example as well. Sometimes a
volunteer might claim a rescue and then drop it, causing some rescue to have
multiple volunteers in the log. In this case, we create our labels based on the
last volunteer.

Negative Labels A negative example means that a particular volunteer did not
claim a particular rescue. Since almost all rescues have only one volunteer who
claimed the rescue, obviously most of our data points will have negative labels.
However, not all of these negative data points are necessarily true, because per-
haps a volunteer would have claimed some rescue if someone else had not claimed
it 10 minutes in advance. Thus, we use the following ways to construct a selected
negative dataset. First, recall that 412 Food Rescue used a mobile app push no-
tification scheme which notifies volunteers within 5 miles when the rescue is first
available and then notifies all volunteers 15 minutes later if the rescue has not
been claimed. Thus, if a rescue is claimed within 15 minutes, we only treat the
volunteers who were within 5 miles and did not opt out of push notifications as
negative examples.

We also incorporate another data source to strengthen our negative sampling.
In addition to mobile app notifications, recall that the dispatcher at 412FR also
manually call some regular volunteers to ask for help with a specific rescue. We
obtained the call history from 412FR, from which we identify the volunteers they
reached out to within the time frame of each rescue. If these volunteers did not
claim the rescues in the end, we treat them as negative examples. Compared to
the negative examples derived from push notifications, we have more confidence
in this set of negative examples, since declining on a phone call is a stronger
indicator than ignoring a push notification.

Feature Engineering We carefully identify a selected set of useful features that
are relevant in the food rescue operation.

First, the experience of food rescue dispatcher indicates that if a volunteer
has completed a rescue at or near a donor or recipient, they are more likely to
do a rescue trip again in the neighborhood. As shown in Figure 7, we divide the
Greater Pittsburgh Region into 16 cells. We evenly divide a central rectangular
region into a 3× 5 grid, and label them grid cells 0 through 14. Then, we label
the entire map outside the rectangular region cell 15. The rationale is that in the
outer suburbs there are fewer donors, recipients, and volunteers, and furthermore
volunteers who in suburbs are more willing to do long-distance, i.e. inter-cell,
rescue than volunteers in downtown. For each rescue trip and each volunteer,
we calculate the number of rescues the volunteer has done in the rescue donor’s
cell, in the rescue recipient’s cell, and across all cells. These counts are only up
to the date of the given rescue, so that we could prevent data leakage. We also
tried to include as features the volunteer’s historical rescues in each cell, not just
the donor’s and recipient’s cell. However, they did not contribute any predictive
power and thus we leave them out of the final model.

16 Shi et al.

0 1 2
3 4 5
6 7 8

10 119
12 13 14

15

(a) Distribution of donor organizations.
Darker colors mean more frequent dona-
tions. We plot the donor locations with
random perturbations.

0 1 2
3 4 5
6 7 8

10 119
12 13 14

15

(b) Density of recipient organizations.
Darker colors mean more recipient orga-
nizations in the grid.

Fig. 7. We divide the Pittsburgh area into 16 grid cells, with cells 0–14 covering down-
town Pittsburgh and its neighborhoods, and cell 15 containing the rest of the region.

Closely related to this is the distance between the volunteer and the donor.
It is unlikely that a volunteer would drive 30 miles to pick up a donation, as
we show in Figure 8a. We measure the distance using the straight line distance
based on geographic coordinates. Although the actual traveling distance might
be a better indicator, we observe that the straight line distance already serves
our purpose.

Aside from the geographical information, the length of time between volun-
teer’s registration on the platform and the rescue is also an important factor, as
suggested by our collaborators at 412FR. We plot the histogram of this variable
in Figure 8b. Immediately after registration, the volunteer is eager to claim a
rescue to get a feel of the food rescue experience. If a volunteer has stuck with
the program for an extended period and remains active, it is likely that they
are a regular and dependable one as well, which is substantiated with the up-
ward trend and plateau in Figure 8b around days 300–600. Thus, we include this
feature in our prediction model.

Weather information is also an important factor in the prediction. Presum-
ably rainy and snowy days would see a lower volunteer activity in general. How-
ever, the impact of inclement weather would fall disproportionately on volunteers
who do not have a car or live in suburban areas. Same as in Section 2.1, we use the
Climate Data Online (CDO) service provided by the National Oceanic and At-
mospheric Administration to access the weather information. The CDO dataset

AI for Food Rescue 17

0 20 40 60
Distance between donor and volunteer (miles)

100

101

102

103
Co

un
t

(a) Histogram of rescues,
based on the distance be-
tween the donor and the
volunteer who claimed the
rescue.

0 250 500 750 1000
Days from registration to rescue

101

102

103

Co
un

t

(b) Histogram of rescues,
based on the length of time
between the rescue and the
registration of the volunteer
who claimed the rescue.

0 1 2 3 4 5 6 7 8 9 101112131415
Volunteer grid cell

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n
of

 re
sc

ue
s Wet days

Dry days

(c) Histograms of rescues
under wet and dry weather,
based on the location of the
volunteer who claimed the
rescue.

Fig. 8. Data analysis results.

Layer Operation Hidden Units
1 Dense (ReLU) 384
2 Dense (ReLU) 2048
3 Dense (ReLU) 512
4 Dense (Logistic) 16

Table 8. Neural network architecture

contains weather information at the discretization level of days and weather sta-
tion. There are multiple weather stations in the Pittsburgh area and for each
rescue we select the data for the date of rescue and the station that is closest
to the donor organization. As shown in Figure 8c, on wet days, relatively more
volunteers who claim the rescue reside in downtown Pittsburgh (cell 4 and 7).
Whereas on dry days, a lot more volunteers who live in the outer suburbs of
Pittsburgh (cell 15) are active. In fact, we also saw a significant difference in
the average distance between volunteer and donor for dry days (5.94 miles) and
rainy days (5.22 miles), with a t-test p-value 3× 10−8.

We also explored a number of other features but did not incorporate them
into our final model. These features include the rescue’s time of day and day
of week, the volunteer’s availability, whether the volunteer uploaded an avatar
to their profile or not, whether the volunteer is located in the same grid as the
donor or recipient, and so on. Although these are intuitive factors, we did not
find them improve the predictive power of our model and hence left them out.

2.3.2 Recommender System

We build a neural network-based recommender system. We first detail our net-
work architecture, and then discuss our approaches to address the unique chal-
lenges in the food rescue domain.

We show the neural network architecture in Table 8. The input to the neural
network is the feature vector of a rescue-volunteer pair. The feature vector passes

18 Shi et al.

through four dense layers. Each layer is followed by a ReLU activation function,
except for the last layer where we output a single number which is then converted
to a number between 0 and 1 by the logistic function. This output represents the
likelihood that this volunteer will claim this rescue trip. We use the cross entropy
loss to train the neural network. To output a list of k volunteers to whom we
send push notifications for a particular rescue at prediction time, we pass the
feature vectors of the rescue-volunteer pairs for all volunteers on a fixed rescue
through the network and rank the output to take the top k of them.

Negative Sampling As mentioned earlier, there is an extremely high label im-
balance in our dataset. From March 2018 to March 2020, there are 6757 rescues
available for the training. Each rescue typically has only one volunteer who
claimed it, and there are 9212 registered active volunteers in the Pittsburgh
area. This means, theoretically, the ratio between negative and positive exam-
ples is over 9000 : 1. Using the method introduced in Section 2.3.1, we can
obtain a selected set of negative examples Dn derived from push notifications
and another set of negative examples Dc derived from dispatcher calls. The set
Dc is slightly smaller than the positive examples Dp, while |Dn| : |Dp| ≈ 700 : 1.
When training the neural network, we always use all the examples from Dp and
Dc. However, we randomly sample a subset of examples from Dn at each episode
of the training. By doing this, we ensure that the negative examples from Dn do
not dominate the training set, and at the same time the “more certain” negative
examples from Dc gets emphasized more than Dn. This whole procedure leads
to an overall ratio between negative and positive samples around 3 : 1 in each
single batch.

Diversity and Online Planning Recommender systems in general suffer from the
diversity issue, where “hot” items get recommended to all the users. In com-
mercial applications, this might lead to the “rich gets richer” phenomenon on
superstar items and the missed revenue opportunity on the less popular items.
All these are valid. However, as we have emphasized several times in this pa-
per, the “items” on the other side of our recommender system are humans. The
aforementioned consequences of the lack of diversity is only going to be more
problematic in our case. If a popular volunteer received push notifications for
every single rescue throughout the day, they would possibly get annoyed and
mute the notifications. On the other hand, for volunteers who are already not
very active, if our system never sent them push notifications, they would prob-
ably just forget about the platform and would be unlikely to return. Therefore,
it is crucial that we properly handle the diversity issue.

We distinguish between two notions of diversity: individual diversity and
aggregate diversity. The former means that each user (rescue) gets recommended
a diverse set of items (volunteers). The latter means that the recommended items
(volunteers) across different users (rescues) combined cover a large portion of the
item space. Our human-centric approach determines that we focus on aggregate
diversity here. In fact, we focus on a slightly different metric: how many times

AI for Food Rescue 19

each volunteer gets recommended for a rescue every day. We wish to put a cap
on this metric, which is directly linked to the user experience of each volunteer.

To this end, we can formulate the following mathematical program for a given
day of food rescue operation.

(Π) max
x

∑
i∈R

∑
j∈V

pijxij

s.t.
∑
j∈V

xij ≤ k, ∀i ∈ R

∑
i∈R

xij ≤ b, ∀j ∈ V

xij ∈ {0, 1}, ∀i ∈ R,∀j ∈ V

Let V denote the set of volunteers. On a particular day, we have a set of
rescues R. The binary decision variable xij is equal to one if we decide to send
push notification to volunteer j about rescue i. The first constraint indicates that
for each rescue we will notify the top k volunteers, as introduced at the beginning
of Section 2.3.2. The second constraint is our diversity constraint, which makes
sure that each volunteer receives at most b push notifications a day. The pij in
the objective is the output from our trained neural network, representing the
predicted likelihood that volunteer j is going to claim rescue i.

While this optimization problem Π is a valid method to improve diversity
in generic recommender systems, it does not solve the problem in our setting.
The reason is that donations, and hence food rescue trips, arrive in our system
sequentially throughout the day, and the dispatcher must also act in real-time.
It is unacceptable to wait till the end of the day, run the optimization prob-
lem above, and then send the push notifications. Therefore, we need an online
algorithm.

An intuitive approach is to resort to the literature on online linear program-
ming [1]. Indeed, we could imagine solving π where at each time step, a new
rescue is revealed with a new column in the x matrix and p matrix. However,
we do not know how many rescues there will be at the beginning of the day.
This is a major obstacle in applying the established algorithms with theoretical
guarantees. Instead, the daily rescue pattern is hardly adversarial in nature and
thus we propose a simple heuristic, as shown in Algorithm 3.

In Algorithm 3, when a food rescue arrives in the system, we sample the
historical rescue data for trajectories. Typically, we would sample the rescues on
the same weekday a week ago, two weeks ago, and so on. The underlying idea
is that the same weekdays might have similar rescue patterns. This is because
most donations that come to 412FR come from grocery stores or large com-
panies/universities. Grocery stores often perform inventory counts on a weekly
basis. Companies and universities often hold weekly events, with catered food.
For each sampled day, we only take the trajectory from the time of the current
rescue to the end of the day. Then, for each trajectory along with the current

20 Shi et al.

Algorithm 3: Online Planning for Optimizing Push Notifica-
tions
1 A trained neural network predictor while a new rescue i arrives do
2 Flush Xi

3 for dayToSample = 1, 2, . . . H do
4 Sample the set of rescues R on the dayToSample that occured from

the time of the current rescue i till the end of the day.
5 Compute predicted claim probabilities pij and pi′j for all i ∈ R, for all

j ∈ V .
6 Solve the following optimization problem:

(Πi) max
x

∑
j∈V

(
pijxij +

∑
i′∈R

pi′jxi′j

)
s.t.

∑
j∈V

xi′j ≤ k, ∀i′ ∈ R

∑
j∈V

xij ≤ k

xij +
∑
i′∈R

xi′j ≤ bj , ∀j ∈ V

xij ∈ {0, 1}, ∀i ∈ R, ∀j ∈ V

7 Keep in Xi the optimal solution x∗
ij for the current rescue only.

8 Sum Xi over the sampled histories, find the top k volunteers.
9 Send push notifications to them. Update the remaining budget bj for each

volunteer j.

rescue, we obtain the neural network’s predicted claim probabilities and solve
the optimization problem Πi. Πi is similar to Π except that each volunteer now
has their own remaining budget of push notification. Note that now everything
in Πi is observed and known, whereas in Π the future rescues are unknown at
the decision-making time. We keep only the part of the optimal solution that
concerns the current rescue and discard the rest. Later, on Line 8 in Algorithm 3,
for each volunteer, we sum over its value in the optimal solution across all the
sampled trajectories. We take the top k volunteers as voted by these solutions,
who become the ones we will send push notifications to for this current rescue.

We note that the optimization problem Π and Algorithm 3 are extremely
flexible to account for many additional considerations. For example, we could use
personal budget bj in Π and add additional constraints to represent the volun-
teer’s push notification preferences. We could also add weights to the objective
function to emphasize the importance of a particular rescue.

AI for Food Rescue 21

2.3.3 Results

Recommender System We use a training set containing rescues from March 2018
to October 2019, which is 80% of the entire dataset. We use the remaining 1373
rescues from November 2019 to March 2020 as the test set.

First, we only consider the prediction part of our algorithm. We compare our
neural network recommender system with several competitive baselines that are
commonly used, including random forest (RF), gradient boosted decision trees
(GBDT), and stacking model (SM). To determine the hyper-parameters of the
baseline models and the neural network model, we separate a validation set which
consists of the last 1/8 of our training set and then run a grid search according to
the performance on the validation set. For experiments on the baselines, we use
the same negative sampling method on Dc and Dp as described in Section 2.3.2.
As for negative examples from the app notifications Dn, since the baselines
are not gradient descent-based methods, we sample them in two schemes such
that the ratio between the positive and negative examples is roughly 1 : 1 and
1 : 20, respectively. We consider the latter because that is roughly the number
of negative examples that the neural network approach has seen throughout the
training, in order to ensure a fair comparison.

We show the results of all these algorithms on the test set, averaged over 5
runs, in Table 9. We consider the hit ratio at k (HR@k) and the normalized dis-
counted cumulative gain at k (NDCG@k) in Table 9. However, we note that our
main metric of interest is the hit ratio, because when sending push notifications,
we do not care about the particular order in which each volunteer ranks on the
list. Also because of this, HR@k is our primary metric during the grid search
on hyper-parameters for all the predictive models. We choose the value of k to
be 964, since this is the average number of push notifications sent per rescue
under the current notification scheme. The current distance-based notification
scheme has a hit ratio of 0.4392. All baselines show better performance than the
current method, with random forest and GBDT being better than the stacking
model. However, the neural network based prediction model outperforms all the
baselines.

The hit ratio of the neural network model is a 66% improvement over that
of the current distance-based method. This means that we would be able to
reach the would-be volunteer in approximately 900 more rescues every year.
Each of these rescues has a donor and a recipient organization that serves tens
or hundreds of people behind it. A smooth food rescue experience would not
only provide basic food necessities to these people, but also encourage these
organizations to keep up the engagement in a sustainable way.

Diversity and Online Planning As mentioned in Section 2.3.2, recommender sys-
tems, in general, suffer from the diversity issue. This problem also exists in our
model. In Figure 9, we plot the histogram of the number of push notifications
received by each volunteer for the test set rescues. The neural network based
recommender system, shown in yellow in Figure 9, exhibits an alarming bimodal
distribution: most volunteers either receive almost no push notifications, or re-

22 Shi et al.

Model HR@k (SD) NDCG@k (SD)
NN 0.7269 (0.0310) 0.1898 (0.0147)

RF(1:1) 0.5989 (0.0395) 0.1319 (0.0303)
RF(1:20) 0.6035 (0.0511) 0.127 (0.0053)

GBDT(1:1) 0.6235 (0.0549) 0.1613 (0.0098)
GBDT(1:20) 0.5394 (0.0152) 0.1023 (0.0086)

SM(1:1) 0.4996 (0.0005) 0.1332 (0.0002)
SM(1:20) 0.5219 (0.0125) 0.0948 (0.0030)
Default 0.4392 (N/A) N/A (N/A)

Table 9. The performance of the neural network based recommender system and
several baselines. All experiments are repeated five times with the mean and standard
deviation shown in the table.

0 250 500 750 1000 1250
Push notifications received for 1373 rescues

102

103

Nu
m

be
r o

f v
ol

un
te

er
s

Recommender system
Online planning
Default

Fig. 9. Histograms of the number of push notifications received by each volunteer over
all the 1373 rescues in the test set. The online planning algorithm has a budget of 6
notifications per day.

ceive push notifications for almost every single rescue. We remark that although
the number of volunteers in the rightmost bin (446 out of 9312) is much smaller
than that in the leftmost bin (7458 out of 9312), the former is much more con-
cerning. This is because they are typically the most “active” volunteers who have
contributed the most to the food rescue program. In fact, these 446 volunteers
contain 39 of the top 50 most frequent volunteers, and 51 of the top 100. If they
left the platform due to too many notifications, which is likely to happen should
the proposed recommender system get deployed, the loss to 412FR would be dis-
proportionately high. On the other hand, the default distance-based notification
scheme does not suffer from this issue, as shown in red in Figure 9. Although the
majority of the volunteers still receive few push notifications, the notification
frequency for each volunteer is capped at roughly once every two rescues.

Figure 9 serves as a stern warning against the premature deployment of
machine learning algorithms in the real world. That a certain model outperforms
the current practice by 66% in some important metric (here, the hit ratio) does
not mean it would not cause other problems.

AI for Food Rescue 23

We use our Algorithm 3 to improve the diversity of volunteer recommen-
dations. As a preliminary and straightforward comparison, we ran our online
planning Algorithm 3 with budget b = 6 push notifications per day using the
rescues seven days ago as the sampled history. We plot its notification histogram
in yellow in Figure 9. It is easy to see that the online planning algorithm achieves
a push notification distribution much more similar to the default scheme, than
the recommender system alone. It completely avoids sending push notifications
about every single rescue to any particular volunteer.

0 250 500 750 1000 1250
Push notifications received for 1373 rescues

100

101

102

103

104

Nu
m

be
r o

f v
ol

un
te

er
s

Default
Recommender system
Online planning - max 4/day
Online planning - max 7/day
Online planning - max 10/day
Online planning - max 13/day

Fig. 10. Histograms of the number of push notifications received by each volunteer
over all the 1373 rescues in the test set, compared across different budget values.

Indeed, the effect of Algorithm 3 on recommendation diversity depends on
the budget parameter b. In Figure 10, we plot the notification distributions
for different choices of the budget value, and compare them against those of
the recommender system and the default notification scheme. As the budget
increases, the distribution of push notifications from Algorithm 3 approaches
that of the recommender system. We note that the position of the rightmost peak
of each histogram should not be interpreted as an indicator of the total number
of push notifications sent. In all of these experiments, we limit the number of
notifications for each rescue at k = 964. Except for when the budget is extremely
small, the algorithm always notify exactly 964 volunteers for each rescue. The
diversity goal here is to make the histogram occupy as little space as possible on
the right side of the figure.

Much as we demonstrate the improvement of recommendation diversity, we
would also like to ensure that the recommendation accuracy of our algorithm
does not drop too much. The budget parameter b captures the inherent trade-
off between diversity and accuracy. As we show in Figure 11, the yellow curve
represents the hit ratio of Algorithm 3. Algorithm 3 outperforms the existing
notification scheme when the budget is more than four notifications per day,
which is a relatively trivial amount. When the budget rises to 10 notifications
per day or more, the hit ratio is very close to the bare bone recommender system.

24 Shi et al.

2.5 5.0 7.5 10.0 12.5 15.0
Daily push notification budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Hi
t r

at
io

0.05

0.10

0.15

0.20

0.25

Pr
ice

 o
f o

nl
in

e
pl

an
ni

ng

Online planning
Offline planning
Recommender system
Default
Price of online planning

Fig. 11. Hit ratio of the online planing algorithm. Price of online planning, computed
as 1− HRonline

HRoffline
, is shown on the right axis.

In order to further evaluate the quality of online planning in Algorithm 3,
we also solve an offline version of the problem, where we solve the mathematical
program Π separately for each day, assuming full information about the rescues
on that day. We show the hit ratio of the recommendation decision from this
offline version in blue in Figure 11. Since having full information is always bet-
ter, the blue curve always lies above the yellow curve representing the online
planning. However, the difference is not big. We term the difference as the “price
of online planning”, which is computed as 1− HRonline

HRoffline
. In fact, Figure 11 shows

that the price of online planning is decreasing as the budget grows, and is con-
sistently smaller than 0.1 when the algorithm is of potential deployment interest
(performing better than the current practice). This validates our earlier claim
in Section 2.3.2 that the rescues on the same weekday of the previous week are
a reasonably good indicator of the rescues on the present day.

3 Resource Requirements

Dataset The food rescue dataset is provided by 412FR under a data use agree-
ment. The weather data are readily available at Climate Data Online.

Computing Resources We conducted all of our experiments on an Intel i7-7700K
4.20GHz CPU with 64GB RAM.

Software Tools We implemented the machine learning components of the code
with PyTorch and Scikit-learn. The online planning algorithm requires the inte-
ger programming solver Gurobi, though open source substitutes exist as well.

Deployment and Maintenance The recommended INS and the recommender
system push notification system are integrated into 412FR’s proprietary food
rescue management system FoodRescueX.

AI for Food Rescue 25

Condition Claim Rate Average time from
publish to claim (min)

Average # push
notifications sent

Before 2/10/2020 (Previous scheme) 0.84 78.43 11499.45
2/10/2020 - 3/1/2020 (New scheme) 0.88 43.05 9167.52

After 3/1/2020 (After COVID) 0.92 39.73 9735.54
Table 10. Food rescue metrics before and after the adoption of the recommended INS.

4 Field Evaluation

The intervention and notification scheme in Section 2.2.3 has been adopted by
412FR since February 2020. Table 10 shows the key food rescue metrics before
and after the adoption. Because COVID-19 started to impact the life in Pitts-
burgh in March 2020, we split the period after adoption into before COVID
and after COVID in order to provide a more objective picture of the results.
As shown in Table 10, after the adoption of our recommended INS, the rescue
claim rate went up, the rescues got claimed faster, and 412FR had to send fewer
push notifications. This indicates that all these three key metrics improved in the
desirable direction. After COVID hit the area, the improvement stuck around,
and got even better in both the claim rate and the claim speed. Nevertheless,
we need to emphasize that this is not a controlled experiment. There could be
lots of confounding factors.

We are working with 412FR to deploy the recommender system push notifi-
cation scheme introduced in Section 2.3. We are launching a randomized control
trial to rigorously evaluate the effect of the machine learning-based push no-
tification system. We have integrated the ML model into 412FR’s food rescue
management platform “FoodRescueX”. If the pilot study shows promising results,
the ML model could be readily used and maintained in the long term.

5 Lessons Learned

Collaboration between nonprofit organizations and academic researchers is chal-
lenging. In what follows, we attempt to gather some lessons we learned in this
collaboration that are actionable for academic researchers.

Academic researchers come into these collaborations with a certain toolkit.
They have every incentive to drive the collaboration towards a direction that
would best fit their research agenda. However, this risks them ending up not
working on something the nonprofit organization wants the most. This is disre-
spectful to their nonprofit collaborators. And they would pay the price eventually
– because the nonprofit does not need it, they probably would not want to deploy
it. The simple and obvious way out, we believe, is real listening. At the beginning
of our collaboration with 412FR, we had a long list of research questions that
would leverage our technical expertise. However, the collaboration only took off
when we really listened to their needs and threw our own research agenda off
the table, even if that meant we had to explore a new research area.

26 Shi et al.

After throwing our research agenda out of the room, we had to throw our-
selves into the problem setting. The several meetings with our food rescue part-
ners gave us an initial understanding of the problem setting, but to really un-
derstand the problem, we had to be part of that problem as well. We completed
food rescue trips ourselves as volunteers, sat with the food rescue dispatchers in
the office to observe how they work, and went on rides with the food rescue truck
drivers to meet the communities they serve. Such personal experience helped a
lot in our later problem formulation and research.

On problem formulation, it is nothing new, but probably worth reiterating,
that technology amplifies existing initiatives rather than create new ones [6].
Push notifications and dispatcher interventions are something that FRs had
already been doing prior to our work. Thus, our work simply suggests new pa-
rameters that FRs may reference in their standard procedure. This made our
work more easily accepted and deployed.

References

1. Adomavicius, G., Kwon, Y.: Optimization-based approaches for maximizing aggre-
gate recommendation diversity. INFORMS Journal on Computing 26(2), 351–369
(2014)

2. Coleman-Jensen, A., Rabbitt, M.P., Gregory, C.A., Singh, A.: Household food se-
curity in the united states in 2017. USDA-ERS Economic Research Report (2018)

3. Conrad, Z., Niles, M.T., Neher, D.A., Roy, E.D., Tichenor, N.E., Jahns, L.: Rela-
tionship between food waste, diet quality, and environmental sustainability. PloS
one 13(4), e0195405 (2018)

4. Felt, A.P., Egelman, S., Wagner, D.: I’ve got 99 problems, but vibration ain’t one: a
survey of smartphone users’ concerns. In: Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices. pp. 33–44. ACM (2012)

5. Laborde, D., Martin, W., Swinnen, J., Vos, R.: Covid-19 risks to global food security.
Science 369(6503), 500–502 (2020)

6. Toyama, K.: Geek heresy: Rescuing social change from the cult of technology. Pub-
licAffairs (2015)

7. Wolfson, M.D., Greeno, C.: Savoring surplus: effects of food rescue on recipients.
Journal of Hunger & Environmental Nutrition (2018)

8. Wolpert, D.: Stacked generalization. Neural networks (1992)

	AI for Food Rescue

